Descripción de herramientas computacionales aplicadas para analizar el riesgo ocasionado por flujos piroclásticos

dc.creatorPenna Salcedo, Jhonny
dc.creatorCárdenas Quiroga, Elsa Adriana
dc.creatorMorales Martin, Luz Yolanda
dc.date.accessioned2020-01-08T19:02:04Z
dc.date.accessioned2022-09-28T20:49:32Z
dc.date.available2020-01-08T19:02:04Z
dc.date.available2022-09-28T20:49:32Z
dc.date.created2020-01-08T19:02:04Z
dc.identifierhttp://hdl.handle.net/10654/32998
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3735379
dc.publisherUniversidad Militar Nueva Granada
dc.relationhttps://revistas.unimilitar.edu.co/index.php/ravi/article/view/1925/1521
dc.relation/*ref*/Alberico et al. (2002). A methodology for the evaluation of long-term volcanic risk from pyroclastic flows in CampiFlegrei (Italy), Journal of Volcanology and Geothermal Research,116, 63-78.
dc.relation/*ref*/Bursik, M., Patra, A.; Pitman, E.B.; Nichita, C.; Macías, J.; Saucedo, R.; Girina, O. (2005). Advances in studies of dense volcanic granular flows. Reports on Progress in Physics 68, 271-301.
dc.relation/*ref*/Constantinescu, R. (2012). Methods for quantitative volcanic hazard assessment in densely populated areas, with emphasis on pyroclastic flows. Case study: El Misti and Arequipa, South-western. Perú.
dc.relation/*ref*/Delaite G.; Thouret J-C.; Sheridan M.; Labazuy P.; Stinton A.; Souriot T.; Westen, C-V. (2005). Assement of volcanic hazards of El Misti and in the city of Arequipa, Peru, based on GIS and simulations, with emphasis on lahars - Z. Geomorphology. N. F., 140, 209-231
dc.relation/*ref*/Druitt T. (1998). Pyroclastic density currents. In Gilbert J.S and Sparks R.S. J (eds) The physics of explosive volcanic eruptions. Geological Society of London, Special Publication 145, 145-182.
dc.relation/*ref*/Heim, A. (1932). Bergsturz and Menschenleben: zurich, Fretz & Wasmuth Verlag, p. 218
dc.relation/*ref*/Iverson, R. (1997). The physics of debris °ows, Rev. Geophys, 35, 245-296.
dc.relation/*ref*/Hooper, D. and Mattioli, G. (2001). Kinematic modeling of pyroclastic flows produced by gravitational dome collapse at Soufriere Hills volcano, Montserrat, Natural Hazards 23, 65- 86.
dc.relation/*ref*/Kelfoun, K.; Druitt, T. (2005), Numerical modeling of the Socompa rock avalanche, Chile.J. Geophys. Research 110:B12202.
dc.relation/*ref*/Kelfoun, K.; Duitt, T.; van Wyk de Vries B.; Guilbaud M - N. (2008), Topography reflection of the Socompa debris avalanche, Chile. Bull. Volc. 70, 1169-1187.
dc.relation/*ref*/Kelfoun, K. (2009). VolcFlow simulation of Volcanic Flows. Observatoire de Physique du Globe de Clermont-Fd (OPGC), Université Blaise Pascal. Francia.
dc.relation/*ref*/Kelfoun, K. (2013) Consultoría Para La Modelización De Los Flujos Piroclástico Del Volcán
dc.relation/*ref*/Tungurahua. Proyecto Sistema de Alerta Temprana y Gestión del Riesgo Natural Instituto. Clermont-Ferrand. Francia.
dc.relation/*ref*/Kover, T.; and Sheridan, M. (1993). Numerical Models for pyroclastic flows of Mt. Unzen, Japan. Geol. Soc. Amer. Abstracts with Programs, 25,268.
dc.relation/*ref*/Kover, T. (1995). Application of a digital terrain model for the modeling of volcanic flows: a tool for volcanic hazard determination. (MSc Thesis), State University of New York at Buffalo.
dc.relation/*ref*/McEwen, A.; and Malin, M. (1989). Dynamics of Mount St. Helens’ 1980 pyroclastic flows, rockslide-avalanche, lahars, and blast, J. Volcanol. Geotherm. Res. 37, 205–231.
dc.relation/*ref*/Macías, J.; Carrasco, G.; Delgado, H.; Martin del Pozzo, A.; Siebe, C.; Hoblitt, R.; Sheridan, M.; Barrera, D.; Hubp, J.; and Selem, L. (1995). Mapa de Peligros Volcán de Colima, Instituto de Geofísica, UNAM, México.
dc.relation/*ref*/Macías, J.; Capra, L.; Arce, J.; Espíndola, J.; García, A.; Sheridan, M. (2008). Hazard Map of El Chichón volcano, Chiapas, México: Constraints posed by eruptive history and computer simulations. Journal of Volcanology and Geothermal Research, 175, 444-458.
dc.relation/*ref*/Mangeney, A.; Heinrich, P.; and Roche, R. (2000), Analytical solution for testing debris avalanche numerical models, Pure Appl. Geophys., 157, 1081-1096.
dc.relation/*ref*/Murcia, H.F., Sheridan, M.F., Macias, J.L., Cortés, G.P. (2010): Titan2d Simulations of pyroclastic flows at Cerro Machín volcano, Colombia: Hazards implications.- Journal of South American Earth Sciences. 29, 161-170.
dc.relation/*ref*/Obando, M.; y Ramos, R. (2003). Evaluación de la amenaza por flujos Piroclásticos en la localidad de Cajamarca (Tolima) ante una probable erupción del volcán Cerro Machín. Universidad Nacional de Colombia, Bogotá.
dc.relation/*ref*/Patra, A.; Bauer, A.; Nichita, C.; Pitman, E.; Sheridan, M.; Bursik, M.; Rupp, B.; Webber, A.; Namikawa, L., and Renschler, C. (2005). Parallel Adaptive Numerical Simulation of Dry Avalanches Over Natural Terrain. Journal of Volcanology and Geophysical. Research. Buffalo, NY, USA
dc.rightsCopyright (c) 2016 Academia y Virtualidad
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.sourceAcademia y Virtualidad; Vol 6 No 1 (2013); 62-74
dc.sourceAcademia y Virtualidad; Vol. 6 Núm. 1 (2013); 62-74
dc.source2011-0731
dc.subjectPyroclastic flows
dc.subjectEnergy line
dc.subjectFLOW3D
dc.subjectTITAN2D
dc.subjectVOLCFLOW
dc.subjectFlujos piroclásticos
dc.subjectlínea de energía
dc.subjectFLOW3D
dc.subjectTITAN2D
dc.subjectVOLCFLOW
dc.titleComputational tools description applied to analyze the risk caused by pyroclastic flows
dc.titleDescripción de herramientas computacionales aplicadas para analizar el riesgo ocasionado por flujos piroclásticos
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución