dc.contributor | Dávila, Julián | |
dc.creator | Martinez Urrutia, Wilmar | |
dc.date.accessioned | 2020-10-03T06:10:27Z | |
dc.date.accessioned | 2022-09-28T20:49:10Z | |
dc.date.available | 2020-10-03T06:10:27Z | |
dc.date.available | 2022-09-28T20:49:10Z | |
dc.date.created | 2020-10-03T06:10:27Z | |
dc.date.issued | 2020-07-01 | |
dc.identifier | http://hdl.handle.net/10654/36467 | |
dc.identifier | instname:Universidad Militar Nueva Granada | |
dc.identifier | reponame:Repositorio Institucional Universidad Militar Nueva Granada | |
dc.identifier | repourl:https://repository.unimilitar.edu.co | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3735239 | |
dc.description.abstract | El presente estudio presenta como principal objetivo, conseguir operar un bus industrial dentro de la región de la luz visible y no dentro del espectro electromagnético utilizado por Wi Fi, alcanzando velocidades iguales o mayores, con mejoras en el consumo energético y la inmunidad a las interferencias electromagnéticas.
Por tal razón, esta investigación busca determinar el posible impacto de la integración del estándar industrial RS 485 con la tecnología Li-Fi, en la operatividad de un sistema ciber físico, al considerar la latencia, la capacidad, la fiabilidad y el consumo energético como parámetros de rendimiento. | |
dc.language | spa | |
dc.publisher | Maestría en Ingeniería Mecatrónica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Universidad Militar Nueva Granada | |
dc.relation | Albraheem, L. I. (2018). Toward designing a li-fi-based hierarchical IoT architecture. Institute of Electrical and Electronics Engineers Inc., 40811-40825. | |
dc.relation | Ali, S. A. (2018). Standards for CPS. Cyber Security for Cyber Physical Systems, 161–174. doi:10.1007/978-3-319-75880-0_8 | |
dc.relation | Apoorv, S. K. (2019). Implementation of Li-Fi Technology in Classrooms. IOP Conference Series: Materials Science and Engineering, (pág. 590). doi:10.1088/1757-899x/590/1/012044 | |
dc.relation | Astralpool. (2020). Guia de protocolo Modbus. Obtenido de https://au.wellindal.com/garden/astralpool/optional-kit-modbus-rtu-60363 | |
dc.relation | Bakakeu, J. S. (2017). Building Cyber-Physical Systems - A Smart Building Use Case. Smart Cities, 605–639. doi:10.1002/9781119226444.ch21 | |
dc.relation | Bao, X. Y. (2015). Li-Fi: Light fidelity-a survey. Wireless Networks, 1879–1889. doi:10.1007/s11276-015-0889-0 | |
dc.relation | Bedi, G. V.-C. (2018). Review of Internet of Things (IoT) in Electric Power and Energy Systems. IEEE Internet of Things Journal, 847-870. | |
dc.relation | Bhanse, S. P. (2018). Li + Wi Fi: The Future of Internet of Things. 3rd International Conference on Communication and Electronics Systems (ICCES). doi:10.1109/cesys.2018.8724051. | |
dc.relation | Bollaín Sánchez, M. (2019). Ingeniería de instrumentación de plantas de proceso. Ediciones Díaz de Santos. | |
dc.relation | César Augusto SALAZAR SERNA, L. C. (2011). Buses de campo y protocolos en redes industriales. Ventana informatica, 83-109. | |
dc.relation | Chen, C. T. (2013). Joint transmission in indoor visible light communication downlink cellular networks. IEEE Globecom Workshops, 1127-1132. | |
dc.relation | Condliffe, J. (2011). Is Li-Fi ready to establish itself as the new Wi-Fi? . New Scientist. doi:10.1016/s0262-4079(11)61753-3 | |
dc.relation | Consejo de Estado - Sala de Consulta y Servicio Civil. (2016). Documentos para TELECOMUNICACIONES :: Espectro Electromagnético. Colombia. | |
dc.relation | Deng, J. Y. (2016). A real-time VLC to UART protocol conversion system. Optoelectronics Letters, 299–303. doi:10.1007/s11801-016-6001-x | |
dc.relation | Elattar, M. (2020). Reliable Communications within Cyber-Physical Systems Using the Internet (RC4CPS). En Technologien Für Die Intelligente Automation. doi:10.1007/978-3-662-59793-4 | |
dc.relation | Farhan, L. &. (2018). Internet of Things: Vision, Future Directions and Opportunities. Smart Sensors, Measurement and Instrumentation, 331–347. doi:10.1007/978-3-319-99540-3_17 | |
dc.relation | Festo. (s.f.). Industrie 4.0 / IoT: productos y soluciones. Obtenido de https://www.festo.com/cms/es-co_co/56644_58344.htm | |
dc.relation | Flavia C. delicato, A. A.-A.-K. (2019). Smart Cyber-Physical Systems: Towards Pervasive Intelligence systems. En Future Generation Computer Systems. sciencedirect. doi:10.1016/j.future.2019.06.031. | |
dc.relation | Gonzaléz, A. F. (2015). DISEÑO E IMPLEMENTACIÓN DE UN PROTOTIPO DE COMUNICACIÓN DE LUZ VISIBLE (VLC). Trabajo de grado, UNIVERSIDAD PILOTO DE COLOMBIA, Bogotá. Obtenido de http://polux.unipiloto.edu.co:8080/00002492.pdf | |
dc.relation | Greenwood, G. G. (2015). Cyber-Physical Systems: The Next Generation of Evolvable Hardware Research and Applications. Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, 285–296. doi:10.1007/978-3-319-13359-1_23 | |
dc.relation | Guo, W. Z. (2015). The integration of CPS, CPSS, and ITS: A focus on data. Tsinghua Science and Technology, 327–335. doi:10.1109/TST.2015.7173449 | |
dc.relation | H. Haas, L. Y. (2016). What is LiFi? in Journal of Lightwave Technology, 1533-1544. doi:10.1109/JLT.2015.2510021 | |
dc.relation | H. Yaqub, M. M. (2016). LiFi: The future for indoor wireless data communication. Int. J. Sci. Eng. Res, 823-829. | |
dc.relation | Haas, H. (2018). LiFi is a paradigm-shifting 5G technology. Reviews in Physics, 26-31. doi:10.1016/j.revip.2017.10.001 | |
dc.relation | Haas, H. C. (2017). A guide to wireless networking by light. Progress in Quantum Electronics, 88–111. doi:10.1016/j.pquantelec.2017.06.003 | |
dc.relation | Haas, H. S. (2020). Visible-light communications and light fidelity. Optical Fiber Telecommunications VII, 443–493. | |
dc.relation | Haas, H. Y. (2020). Introduction to indoor networking concepts and challenges in LiFi. Journal of Optical Communications and Networking, A190-A203. | |
dc.relation | Herwan, J. K. (2018). Cyber-physical system architecture for machining production line. IEEE Industrial Cyber-Physical Systems (ICPS). doi:10.1109/icphys.2018.8387689 | |
dc.relation | Hoeher, P. A. (2019). Selected VLC and FSO Applications. Visible Light Communications, 223–234. doi:10.3139/9783446461727.010 | |
dc.relation | IEEE Std 610. (1991). IEEE Std 610 - IEEE Standard Computer Dictionary: A. IEEE Std 610, 1–217 | |
dc.relation | Ito, H. K. (2004). High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes. IEEE Journal on Selected Topics in Quantum Electronics, 709-727 | |
dc.relation | Jia, H. &. (2010). Research on the Technology of RS485 over Ethernet. 2010 International Conference on E-Product E-Service and E-Entertainment. doi:10.1109/iceee.2010.5660255 | |
dc.relation | Jiménez, F. (2019). LiFi: características y retos de esta nueva tecnología. Obtenido de UNL - CIEYT: http://telecomunicaciones.edu.ec/repositorio/articulos-blog/ciencia-y-tecnologia/lifi-caracteristicas-y-retos-de-esta-nueva-tecnologia | |
dc.relation | Jurczak, C. (2017). LiFi: Enlightening Communications. researchgate.net. | |
dc.relation | Khan, L. U. (2017). Visible light communication: Applications, architecture, standardization and research challenges. Digital Communications and Networks, 78–88. doi:10.1016/j.dcan.2016.07.004 | |
dc.relation | L. I. Albraheem, L. H. (2018). Toward Designing a Li-Fi-Based Hierarchical IoT Architecture. IEEE Access, 40811-40825. | |
dc.relation | Lambrechts, W. &. (2019). A Theoretical Analysis of Li-Fi: A Last Mile Solution. Lecture Notes in Networks and Systems, 109–142. doi:10.1007/978-3-030-20957-5_4 | |
dc.relation | Lee, J. B.-A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 18-23. doi:10.1016/j.mfglet.2014.12.001 | |
dc.relation | Li, F. Y. (2017). Quantum dot white light emitting diodes with high scotopic/photopic ratios. Optics Express, 21901-21913. | |
dc.relation | Li, H. (2018). Introduction to cyber physical systems. Communications for Control in Cyber Physical Systems, 1–8. doi:10.1016/b978-0-12-801950-4.00001-9 | |
dc.relation | Martinez-Sala, A. &. (2002). Despliege de redes inalambricas de entornos industriales. Departamento de Tecnologías de la Información y las Comunicaciones - Universidad Politécnica de Cartagena. | |
dc.relation | Mehmet Fatih Isik, B. Y. (2017). Applicability of Li-Fi Technology for Industrial Automation Systems. International Journal of Electronics and Electrical Engineering, 21-25. | |
dc.relation | Mehta, B. R. (2015). Serial communications. Industrial Process Automation Systems, 307–339. | |
dc.relation | Nassiri, A. C. (2016). History and Technology Developments of Radio Frequency (RF) Systems for Particle Accelerators. IEEE Transactions on Nuclear Science, 707-750. | |
dc.relation | Ooi, B.-Y. S. (2020). The potential of IoT for instrumentation and measurement. IEEE Instrumentation and Measurement Magazine, 21-26. Obtenido de https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085154510&doi=10.1109%2fMIM.2020.9082794&partnerID=40&md5=2cb55da352ebb42462c6f788747c9a49 | |
dc.relation | P. Bandela, P. N. (2014). Li-Fi (light fidelity): The next generation of wireless network. Int. J. Adv. Trends Comput. Sci. Eng., 132-137. | |
dc.relation | P. Manju, M. G. (2015). Li-Fi technology light source as a hub of data transmission and projection display. J. Embedded Syst., 35-40. | |
dc.relation | Perwej, Y. (2017). The next generation of wireless communication using Li-Fi (light fidelity) technology. Comput. Netw., 20-29. | |
dc.relation | Raj, A. B. (2019). Historical perspective of free space optical communications: from the early dates to today’s developments. IET Communications. doi:10.1049/iet-com.2019.0051 | |
dc.relation | Sastry, J. S. (2015). Building heterogeneous distributed embedded systems through rs485 communication protocol. ARPN Journal of Engineering and Applied Sciences, 6793-6803. | |
dc.relation | Serpanos, D. (2018). The Cyber-Physical Systems Revolution. Computer, 70–73. doi:10.1109/mc.2018.1731058 | |
dc.relation | Shamsudheen, P. S. (2016). Performance Analysis of Visible Light Communication System for Free Space Optical Communication Link. 827–833. doi:10.1016/j.protcy.2016.05.116 | |
dc.relation | Shi, Y., Han, Q., Shen, W., & 3, H. Z. (2019). Potential applications of 5G communication technologies in collaborative intelligent manufacturing. IET Collaborative Intelligent Manufacturing , 109 – 116. | |
dc.relation | Swain, K. P. (2019). Design and implementation of opto-electro decoder using photonic structure: A new application of Li-fi vis-a-vis optical embedded system. Optik, 658-663. | |
dc.relation | Swami, N. V. (2016). Light Fidelity (Li-Fi): In Mobile Communication and Ubiquitous Computing Applications. Advances in Computing Applications, 75-85. doi:10.1007/978-981-10-2630-0_5 | |
dc.relation | Swarnkar, M. B. (2018). Architectural Building Protocols for Li-Fi (Light Fidelity). Emerging Wireless Communication and Network Technologies, 127–137. doi:10.1007/978-981-13-0396-8_7 | |
dc.relation | Törngren, M. A. (2017). Characterization, Analysis, and Recommendations for Exploiting the Opportunities of Cyber-Physical Systems. Cyber-Physical Systems, 3–14. doi:10.1016/b978-0-12-803801-7.00001-8 | |
dc.relation | Turan, B. D. (2019). Visible Light Communications in Industrial Internet of Things (IIoT). Computer Communications and Networks, 163–191. doi:10.1007/978-3-030-24892-5_8 | |
dc.relation | Wang, L. T. (2015). Current status and advancement of cyber-physical systems in manufacturing. Journal of Manufacturing Systems, 517–527. | |
dc.relation | Weis, O. (2019). Aspectos principales sobre RS485. Cómo registrar la actividad RS485. Obtenido de https://www.eltima.com/es/article/rs485-data-logger.html | |
dc.relation | Wen, C. (2017). Telemedicine, eHealth and Remote Care Systems. En Global Health Informatics: How Information Technology Can Change Our Lives in a Globalized World (págs. 168-194). doi:10.1016/B978-0-12-804591-6.00009-4 | |
dc.relation | Wollschlaeger, M. S. (2017). The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0. IEEE Industrial Electronics Magazine, 17-27. | |
dc.relation | Wu, X. S. (2017). Access point selection for hybrid Li-Fi and Wi-Fi networks. IEEE Transactions on Communications, 5375-5385. | |
dc.relation | Xianhe Wang, X. Z. (2011). Introduction to cyber physical systems. International Conference on Advanced Intelligence and Awareness Internet (AIAI 2011). | |
dc.relation | Yang, P. Y.-Y. (2016). Taming Cross-Technology Interference for Wi-Fi and ZigBee Coexistence Networks. IEEE Transactions on Mobile Computing, 1009-1021. | |
dc.relation | Zhou Z., K. M. (2017). Optical Wireless Applications. En R. K.-C. Ma, Handbook of Advanced Lighting Technology (págs. 635-664). Springer, Cham. | |
dc.relation | Zhou, Z. &. (2017). Optical wireless applications. Springer International Publishing. doi:10.1007/978-3-319-00176-0_34 | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights | Acceso abierto | |
dc.title | Evaluación de desempeño de una red de comunicación RS485 + Li Fi en la ejecución de un sistema ciber físico | |