info:eu-repo/semantics/article
Space-Frecuency Descriptors for Automatic Identification of Texture Patterns Using Supervised Learning
Descriptores espacio-frecuencia para identificación automática de patrones de textura en productos textiles utilizando aprendizaje supervisado
Autor
Bejarano Martínez, Arley
Calvo Salcedo, Andres Felipe
Henao Baena, Carlos Alberto
Institución
Resumen
This article presents an evaluation of frequency-space descriptors and texture analysis techniques for textile classification. The work methodology consists of three fundamental stages: characterization, classification and validation. The characterization stage uses descriptors such as wavelet transform, Fourier transform, a state-of-the-art texture characterization method such as segmentation-based fractal texture analysis (SFTA) and the adaptation of the short-space Fourier transform. The classification stage analyzes the use of three state-ofthe-art methods such as Artificial Neural Networks (ANN), Support Vector Machines (SVM) and the Gaussian Process (GP); linear, Gaussian and polynomial kernels were included in SVM and GP. To validate the method, an annotated database is built with ten types of fabrics and 1,000 photos, to which the characterization and classification process is applied by means of a Monte Carlo experiment. At this stage, random training (70 %) and testing (30 %) configurations are generated, finding the performance of each classification model. Finally, the confusion matrix is obtained, and the success percentages of each experiment are determined. Additionally, a time analysis is carried out for each algorithm, both at the descriptor and classifier levels, in order to determine the configuration that offers better features and its computational cost. En este documento se presenta un caso de estudio para evaluar la eficiencia que presentan los descriptores espacio frecuencia en la clasificación de patrones textiles. La metodología de trabajo consta de tres etapas fundamentales, la caracterización, la clasificación y la validación. En la etapa de caracterización se utilizan descriptores como la transformada Wavelet, la transformada de Fourier y la adaptación de la Transformada corta de Fourier en espacio para la generación de un vector de características, a este vector se le computa los momentos estadísticos como Kurtosis, sesgo, media y desviación estándar. Para la etapa de clasificación se analiza el uso de tres métodos del estado del arte como lo son las Máquinas de Soporte Vectorial (SVM), las Redes Neuronales Artificiales (RNA) y el Proceso Gaussiano (GP). Para validar el método se construye una base de datos anotada con diez tipos de telas con un total de 1000 fotos, a las cuales se le aplica el proceso caracterización y clasificación por medio de un experimento Montecarlo. En esta etapa se generan configuraciones aleatorias de entrenamiento (70%) y prueba (30%) obteniendo el desempeño de cada modelo de clasificación. Por último se obtiene la matriz de confusión y se determinan los porcentajes de acierto de cada experimento.