dc.creatorSierra, Juan S.
dc.creatorPineda, Jesus
dc.creatorViteri, Eduardo
dc.creatorRueda, Daniela
dc.creatorTibaduiza, Beatriz
dc.creatorBerrospi, Rúben D.
dc.creatorTello, Alejandro
dc.creatorGalvis, Virgilio
dc.creatorVolpe, Giovanni
dc.creatorMillán, María S.
dc.creatorRomero, Lenny A.
dc.creatorMarrugo Hernández, Andrés Guillermo
dc.date.accessioned2020-11-05T21:13:05Z
dc.date.available2020-11-05T21:13:05Z
dc.date.created2020-11-05T21:13:05Z
dc.date.issued2020-08
dc.identifierJuan S. Sierra, Jesus Pineda, Eduardo Viteri, Daniela Rueda, Beatriz Tibaduiza, Rúben D. Berrospi, Alejandro Tello, Virgilio Galvis, Giovanni Volpe, María S. Millán, Lenny A. Romero, and Andrés G. Marrugo "Automated corneal endothelium image segmentation in the presence of cornea guttata via convolutional neural networks", Proc. SPIE 11511, Applications of Machine Learning 2020, 115110H (19 August 2020); https://doi.org/10.1117/12.2569258
dc.identifierhttps://hdl.handle.net/20.500.12585/9561
dc.identifierhttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/11511/115110H/Automated-corneal-endothelium-image-segmentation-in-the-presence-of-cornea/10.1117/12.2569258.short?SSO=1
dc.identifier10.1117/12.2569258
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio Universidad Tecnológica de Bolívar
dc.description.abstractAutomated cell counting in in-vivo specular microscopy images is challenging, especially in situations where single-cell segmentation methods fail due to pathological conditions. This work aims to obtain reliable cell segmentation from specular microscopy images of both healthy and pathological corneas. We cast the problem of cell segmentation as a supervised multi-class segmentation problem. The goal is to learn a mapping relation between an input specular microscopy image and its labeled counterpart, indicating healthy (cells) and pathological regions (e.g., guttae). We trained a U-net model by extracting 96×96 pixel patches from corneal endothelial cell images and the corresponding manual segmentation by a physician. Encouraging results show that the proposed method can deliver reliable feature segmentation enabling more accurate cell density estimations for assessing the state of the cornea.
dc.languageeng
dc.publisherCartagena de Indias
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.sourceProceedings Volume 11511, Applications of Machine Learning 2020; 115110H (2020)
dc.titleAutomated corneal endothelium image segmentation in the presence of cornea guttata via convolutional neural networks


Este ítem pertenece a la siguiente institución