dc.creatorContreras J.
dc.creatorAcuña O.
dc.date.accessioned2020-03-26T16:33:00Z
dc.date.accessioned2022-09-28T20:25:41Z
dc.date.available2020-03-26T16:33:00Z
dc.date.available2022-09-28T20:25:41Z
dc.date.created2020-03-26T16:33:00Z
dc.date.issued2009
dc.identifierAnnual Conference of the North American Fuzzy Information Processing Society - NAFIPS
dc.identifier9781424445776
dc.identifierhttps://hdl.handle.net/20.500.12585/9125
dc.identifier10.1109/NAFIPS.2009.5156422
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio UTB
dc.identifier35104582500
dc.identifier35104250500
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3727971
dc.description.abstractIn this paper we present a new method to generate interpretable fuzzy systems from training data. A fuzzy system is developed for nonlinear systems modeling and for system state forecasting. The antecedent partition uses triangular sets with 0.5 interpolations avoiding the presence of complex overlapping that happens in other methods. Singleton consequents are employed and least square method is used to adjust the consequents. This approach is not a hybrid system and does not employ other techniques, like neural network or genetic algorithm. Two benchmark problems have been used to illustrate our approach: the first one is an input-output NARMAX model, which is one of the most popular models in the neural and fuzzy literature; the second one is the chaotic, nonperiodic and nonconvergence Mackey-Glass series, commonly used to evaluate a time series forecasting scheme. ©2009 IEEE.
dc.languageeng
dc.relationCincinnati, OH
dc.relation14 June 2009 through 17 June 2009
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-70350426514&doi=10.1109%2fNAFIPS.2009.5156422&partnerID=40&md5=acd20cb69276fbda7287db513a2967e9
dc.sourceScopus2-s2.0-70350426514
dc.source2009 Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2009
dc.titleGenerating dynamic fuzzy models for prediction problems


Este ítem pertenece a la siguiente institución