es | en | pt | fr
    • Presentación
    • Países
    • Instituciones
    • Participa
        JavaScript is disabled for your browser. Some features of this site may not work without it.
        Ver ítem 
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        • Ver ítem
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        • Ver ítem

        Assessing the significance of the correlation between the components of a bivariate Gaussian random field

        Fecha
        2015
        Registro en:
        Environmetrics; Vol. 26, Núm. 8; pp. 545-556
        11804009
        https://hdl.handle.net/20.500.12585/9009
        10.1002/env.2367
        Universidad Tecnológica de Bolívar
        Repositorio UTB
        7102698888
        7005667849
        54783771000
        http://repositorioslatinoamericanos.uchile.cl/handle/2250/3727724
        Autor
        Bevilacqua M.
        Vallejos R.
        Velandia D.
        Institución
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        Resumen
        Assessing the significance of the correlation between the components of a bivariate random field is of great interest in the analysis of spatial data. This problem has been addressed in the literature using suitable hypothesis testing procedures or using coefficients of spatial association between two sequences. In this paper, testing the association between autocorrelated variables is addressed for the components of a bivariate Gaussian random field using the asymptotic distribution of the maximum likelihood estimator of a specific parametric class of bivariate covariance models. Explicit expressions for the Fisher information matrix are given for a separable and a nonseparable version of the parametric class, leading to an asymptotic test. The empirical evidence supports our proposal, and as a result, in most of the cases, the new test performs better than the modified t test even when the bivariate covariance model is misspecified or the distribution of the bivariate random field is not Gaussian. Finally, to illustrate how the proposed test works in practice, we study a real dataset concerning the relationship between arsenic and lead from a contaminated area in Utah, USA. © 2015 John Wiley & Sons, Ltd.
        Materias

        Mostrar el registro completo del ítem


        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018
         

        EXPLORAR POR

        Instituciones
        Fecha2011 - 20202001 - 20101951 - 20001901 - 19501800 - 1900

        Explorar en Red de Repositorios

        Países >
        Tipo de documento >
        Fecha de publicación >
        Instituciones >

        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018