es | en | pt | fr
    • Presentación
    • Países
    • Instituciones
    • Participa
        JavaScript is disabled for your browser. Some features of this site may not work without it.
        Ver ítem 
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        • Ver ítem
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        • Ver ítem

        SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks

        Fecha
        2020
        Registro en:
        Advances in Intelligent Systems and Computing; Vol. 1067, pp. 380-389
        9783030320324
        21945357
        https://hdl.handle.net/20.500.12585/9152
        10.1007/978-3-030-32033-1_35
        Universidad Tecnológica de Bolívar
        Repositorio UTB
        57210565161
        26325154200
        Autor
        Álvarez Almeida L.A.
        Martínez-Santos, Juan Carlos
        Institución
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        Resumen
        In the last few years, the Digital Services industry has grown tremendously, offering numerous services through the Internet and using a recent concept or business model called cloud computing. For this reason, new threats and cyber-attacks have appeared, such as Denial of Service attacks. Their main objective is to prevent legitimate users from accessing services (websites, online stores, blogs, social media, banking services, etc.) offered by different companies on the Internet. In addition, it produces collateral damage in host and web servers, for example, exhaustion of network bandwidth and computer resources of the victim. In this article, we will analyze the information contained in NSL-KDD data-set, which possesses important records about the several behaviors of network traffic. These will be selected to present two methods of selection of features that allow the selection of the most relevant attributes within the data set, to build an Intrusion Detection System. The attributes selected for this experiment will be of great help to train and test various kernels of the Support Vector Machine. Once the model has been tested, an evaluation of the classification model will be performed using the cross-validation technique and we finally can choose the best classifier. © 2020, Springer Nature Switzerland AG.
        Materias

        Mostrar el registro completo del ítem


        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018
         

        EXPLORAR POR

        Instituciones
        Fecha2011 - 20202001 - 20101951 - 20001901 - 19501800 - 1900

        Explorar en Red de Repositorios

        Países >
        Tipo de documento >
        Fecha de publicación >
        Instituciones >

        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018