dc.creatorGutiérrez-Piñeres A.C.
dc.creatorQuevedo H.
dc.date.accessioned2020-03-26T16:33:00Z
dc.date.accessioned2022-09-28T20:20:26Z
dc.date.available2020-03-26T16:33:00Z
dc.date.available2022-09-28T20:20:26Z
dc.date.created2020-03-26T16:33:00Z
dc.date.issued2019
dc.identifierClassical and Quantum Gravity; Vol. 36, Núm. 13
dc.identifier02649381
dc.identifierhttps://hdl.handle.net/20.500.12585/9128
dc.identifier10.1088/1361-6382/ab2422
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio UTB
dc.identifier25225467000
dc.identifier55989741100
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3725950
dc.description.abstractWe propose a criterion for finding the minimum distance at which an interior solution of Einstein's equations can be matched with an exterior asymptotically flat solution. The location of the matching hypersurface is thus constrained by a criterion defined in terms of the eigenvalues of the Riemann curvature tensor by using repulsive gravity effects. To determine the location of the matching hypersurface, we use the first derivatives of the curvature eigenvalues, implying C 3 differentiability conditions. The matching itself is performed by demanding continuity of the curvature eigenvalues across the matching surface. We apply the C 3 matching approach to spherically symmetric perfect fluid spacetimes and obtain the physically meaningful condition that density and pressure should vanish on the matching surface. Several perfect fluid solutions in Newton and Einstein gravity are tested. © 2019 IOP Publishing Ltd.
dc.languageeng
dc.publisherInstitute of Physics Publishing
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068694579&doi=10.1088%2f1361-6382%2fab2422&partnerID=40&md5=e7fc1fc70ffe6deedc839882796256e7
dc.titleC 3 matching for asymptotically flat spacetimes


Este ítem pertenece a la siguiente institución