dc.creator | Payares Guevara, Carlos R. | |
dc.creator | Arias Amaya, Fabián | |
dc.date.accessioned | 2021-09-22T21:27:13Z | |
dc.date.available | 2021-09-22T21:27:13Z | |
dc.date.created | 2021-09-22T21:27:13Z | |
dc.date.issued | 2021-04-29 | |
dc.identifier | Payares Guevara, Carlos R. y Fabián A. Arias Amaya. "Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4" Revista de La Unión Matemática Argentina , vol. 62, no. 1, 29 de abril de 2021, págs. 123-139, https://doi.org/10.33044/revuma.1555. | |
dc.identifier | https://hdl.handle.net/20.500.12585/10366 | |
dc.identifier | 10.33044/revuma.1555 | |
dc.identifier | Universidad Tecnológica de Bolívar | |
dc.identifier | Repositorio Universidad Tecnológica de Bolívar | |
dc.description.abstract | After the classification of simple Lie algebras over a field of characteristic p > 3, the main problem not yet solved in the theory of finite dimensional Lie algebras is the classification of simple Lie algebras over a field of characteristic 2. The first result for this classification problem ensures that all finite dimensional Lie algebras of absolute toral rank 1 over an algebraically closed field of characteristic 2 are soluble. Describing simple Lie algebras (respectively, Lie 2-algebras) of finite dimension of absolute toral rank (respectively, toral rank) 3 over an algebraically closed field of characteristic 2 is still an open problem. In this paper we show that there are no classical type simple Lie 2-algebras with toral rank odd and furthermore that the simple contragredient Lie 2-algebra G(F4,a) of dimension 34 has toral rank 4. Additionally, we give the Cartan decomposition of G(F4,a). | |
dc.language | eng | |
dc.publisher | Cartagena de Indias | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.source | Revista de la Unión Matemática Argentina, Vol. 62, No. 1, 2021 | |
dc.title | Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4 | |