dc.creatorPayares Guevara, Carlos R.
dc.creatorArias Amaya, Fabián
dc.date.accessioned2021-09-22T21:27:13Z
dc.date.available2021-09-22T21:27:13Z
dc.date.created2021-09-22T21:27:13Z
dc.date.issued2021-04-29
dc.identifierPayares Guevara, Carlos R. y Fabián A. Arias Amaya. "Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4" Revista de La Unión Matemática Argentina , vol. 62, no. 1, 29 de abril de 2021, págs. 123-139, https://doi.org/10.33044/revuma.1555.
dc.identifierhttps://hdl.handle.net/20.500.12585/10366
dc.identifier10.33044/revuma.1555
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio Universidad Tecnológica de Bolívar
dc.description.abstractAfter the classification of simple Lie algebras over a field of characteristic p > 3, the main problem not yet solved in the theory of finite dimensional Lie algebras is the classification of simple Lie algebras over a field of characteristic 2. The first result for this classification problem ensures that all finite dimensional Lie algebras of absolute toral rank 1 over an algebraically closed field of characteristic 2 are soluble. Describing simple Lie algebras (respectively, Lie 2-algebras) of finite dimension of absolute toral rank (respectively, toral rank) 3 over an algebraically closed field of characteristic 2 is still an open problem. In this paper we show that there are no classical type simple Lie 2-algebras with toral rank odd and furthermore that the simple contragredient Lie 2-algebra G(F4,a) of dimension 34 has toral rank 4. Additionally, we give the Cartan decomposition of G(F4,a).
dc.languageeng
dc.publisherCartagena de Indias
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.sourceRevista de la Unión Matemática Argentina, Vol. 62, No. 1, 2021
dc.titleClassical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4


Este ítem pertenece a la siguiente institución