dc.contributorEscalante H.J.
dc.contributorMontes-y-Gomez M.
dc.contributorSegura A.
dc.contributorde Dios Murillo J.
dc.creatorCaicedo-Torres W.
dc.creatorGarcía G.
dc.creatorPinzón H.
dc.date.accessioned2020-03-26T16:32:44Z
dc.date.accessioned2022-09-28T20:20:06Z
dc.date.available2020-03-26T16:32:44Z
dc.date.available2022-09-28T20:20:06Z
dc.date.created2020-03-26T16:32:44Z
dc.date.issued2016
dc.identifierLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 212-221
dc.identifier9783319479545
dc.identifier03029743
dc.identifierhttps://hdl.handle.net/20.500.12585/8997
dc.identifier10.1007/978-3-319-47955-2_18
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio UTB
dc.identifier55782426500
dc.identifier57191839719
dc.identifier55782490400
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3725827
dc.description.abstractHigh demand periods and under-staffing due to financial constraints cause Emergency Departments (EDs) to frequently exhibit over-crowding and slow response times to provide adequate patient care. In response, Lean Thinking has been applied to help alleviate some of these issues and improve patient handling, with success. Lean approaches in EDs include separate patient streams, with low-complexity patients treated in a so-called Fast Track, in order to reduce total waiting time and to free-up capacity to treat more complicated patients in a timely manner. In this work we propose the use of Machine Learning techniques in a Lean Pediatric ED to correctly predict which patients should be admitted to the Fast Track, given their signs and symptoms. Charts from 1205 patients of the emergency department of Hospital Napoleón Franco Pareja in Cartagena - Colombia, were used to construct a dataset and build several predictive models. Validation and test results are promising and support the validity of this approach and further research on the subject. © Springer International Publishing AG 2016.
dc.languageeng
dc.publisherSpringer Verlag
dc.relation23 November 2016 through 25 November 2016
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84994153904&doi=10.1007%2f978-3-319-47955-2_18&partnerID=40&md5=c13dcd2b943033797d17b5c57ff8344a
dc.source15th Ibero-American Conference on Advances in Artificial Intelligence, IBERAMIA 2016
dc.titleA machine learning model for triage in lean pediatric emergency departments


Este ítem pertenece a la siguiente institución