dc.creatorBevilacqua M.
dc.creatorAlegria A.
dc.creatorVelandia D.
dc.creatorPorcu E.
dc.date.accessioned2020-03-26T16:32:42Z
dc.date.accessioned2022-09-28T20:18:16Z
dc.date.available2020-03-26T16:32:42Z
dc.date.available2022-09-28T20:18:16Z
dc.date.created2020-03-26T16:32:42Z
dc.date.issued2016
dc.identifierJournal of Agricultural, Biological, and Environmental Statistics; Vol. 21, Núm. 3; pp. 448-469
dc.identifier10857117
dc.identifierhttps://hdl.handle.net/20.500.12585/8981
dc.identifier10.1007/s13253-016-0256-3
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio UTB
dc.identifier7102698888
dc.identifier57188537306
dc.identifier54783771000
dc.identifier21934725400
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3725061
dc.description.abstractIn the recent years, there has been a growing interest in proposing covariance models for multivariate Gaussian random fields. Some of these covariance models are very flexible and can capture both the marginal and the cross-spatial dependence of the components of the associated multivariate Gaussian random field. However, effective estimation methods for these models are somehow unexplored. Maximum likelihood is certainly a useful tool, but it is impractical in all the circumstances where the number of observations is very large. In this work, we consider two possible approaches based on composite likelihood for multivariate covariance model estimation. We illustrate, through simulation experiments, that our methods offer a good balance between statistical efficiency and computational complexity. Asymptotic properties of the proposed estimators are assessed under increasing domain asymptotics. Finally, we apply the method for the analysis of a bivariate dataset on chlorophyll concentration and sea surface temperature in the Chilean coast. © 2016, International Biometric Society.
dc.languageeng
dc.publisherSpringer New York LLC
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84978042302&doi=10.1007%2fs13253-016-0256-3&partnerID=40&md5=2b4c4cbf8bdda67553df93ec78feb0e8
dc.titleComposite Likelihood Inference for Multivariate Gaussian Random Fields


Este ítem pertenece a la siguiente institución