dc.creatorPineda J.
dc.creatorMeza J.
dc.creatorBarrios E.M.
dc.creatorRomero L.A.
dc.creatorMarrugo A.G.
dc.date.accessioned2020-03-26T16:33:05Z
dc.date.accessioned2022-09-28T20:17:18Z
dc.date.available2020-03-26T16:33:05Z
dc.date.available2022-09-28T20:17:18Z
dc.date.created2020-03-26T16:33:05Z
dc.date.issued2019
dc.identifier2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings
dc.identifier9781728114910
dc.identifierhttps://hdl.handle.net/20.500.12585/9155
dc.identifier10.1109/STSIVA.2019.8730228
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio UTB
dc.identifier57192270016
dc.identifier57204065355
dc.identifier57209542195
dc.identifier36142156300
dc.identifier24329839300
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3724646
dc.description.abstractThe problem of phase unwrapping from a noisy and also incomplete wrapped phase map arises in many optics and image processing applications. In this work, we propose a noise-robust approach for processing regional phase dislocations. Our approach combines phase unwrapping and sparse-based inpainting with dictionary learning to recover the continuous phase map. The method is validated both using numerically simulated data with strong additive white Gaussian noise and phase dislocations; and experimental data from fringe projection profilometry. Comparisons with other phase inpainting method referred to as PULSI+INTERP, show the suitability of the proposed method for phase restoration even in extremely noisy phases. The error given by the proposed method on the highest level of noise (RMSE=0.0269 Rad) remains the smallest compared to the error given by PULSI+INTERP for noise-free data (RMSE=0.0332 Rad). © 2019 IEEE.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation24 April 2019 through 26 April 2019
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068049480&doi=10.1109%2fSTSIVA.2019.8730228&partnerID=40&md5=ace3337238ede20ac95bd15a31d715d3
dc.sourceScopus2-s2.0-85068049480
dc.source22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019
dc.titleNoise-Robust Processing of Phase Dislocations using Combined Unwrapping and Sparse Inpainting with Dictionary Learning


Este ítem pertenece a la siguiente institución