es | en | pt | fr
    • Presentación
    • Países
    • Instituciones
    • Participa
        JavaScript is disabled for your browser. Some features of this site may not work without it.
        Ver ítem 
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        • Ver ítem
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        • Ver ítem

        Analysis and classification of lung and muscular tissues in ultrasound images using 2D wavelet transform and machine learning

        Fecha
        2020-11-03
        Registro en:
        S. L. Contreras-Ojeda, J. A. Dominguez-Jiménez, and S. H. Contreras-Ortiz "Analysis and classification of lung and muscular tissues in ultrasound images using 2D wavelet transform and machine learning", Proc. SPIE 11583, 16th International Symposium on Medical Information Processing and Analysis, 115830F (3 November 2020); https://doi.org/10.1117/12.2576368
        https://hdl.handle.net/20.500.12585/9949
        https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/0000/Analysis-and-classification-of-lung-and-muscular-tissues-in-ultrasound/10.1117/12.2576368.short
        10.1117/12.2576368
        Universidad Tecnológica de Bolívar
        Repositorio Universidad Tecnológica de Bolívar
        Autor
        Contreras Ojeda, Sara
        Domínguez Jiménez, Juan Antonio
        Contreras Ortiz, Sonia Helena
        Institución
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        Resumen
        Ultrasound has been considered a safe and accurate alternative to radiography and computerized tomography to diagnose lung diseases such as pneumonia. However, speckle noise, artifacts or certain conditions can difficult image interpretation. For example, in some cases, the pleura line cannot be observed. This work proposes an approach for discriminating between lung and muscular tissues in ultrasound images. We evaluated the symlet and daubechies wavelets for feature extraction, principal component analysis and recursive backward elimination for feature selection, and supervised learning methods for classification. Statistical moments and the energy of the second horizontal coefficient and peak-to-peak root mean squared ratio were the features more outstanding over the rest. The best model was obtained with recursive backward elimination for feature selection and knearest neighbor for classification. Tissue classification was possible with a mean accuracy of 97.5% and area under the curve of 99%. These results offer great insights on the recognition of lung and muscular tissues, which could improve the effectiveness of automatic segmentation and analysis algorithms.
        Materias

        Mostrar el registro completo del ítem


        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018
         

        EXPLORAR POR

        Instituciones
        Fecha2011 - 20202001 - 20101951 - 20001901 - 19501800 - 1900

        Explorar en Red de Repositorios

        Países >
        Tipo de documento >
        Fecha de publicación >
        Instituciones >

        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018