dc.contributorGruca A.
dc.contributorDeorowicz S.
dc.contributorHarezlak K.
dc.contributorPiotrowska A.
dc.contributorCzachorski T.
dc.creatorPiela M.
dc.creatorKotas, Marian
dc.creatorOrtiz S.H.C.
dc.date.accessioned2020-03-26T16:33:06Z
dc.date.available2020-03-26T16:33:06Z
dc.date.created2020-03-26T16:33:06Z
dc.date.issued2020
dc.identifierAdvances in Intelligent Systems and Computing; Vol. 1061, pp. 34-43
dc.identifier9783030319632
dc.identifier21945357
dc.identifierhttps://hdl.handle.net/20.500.12585/9163
dc.identifier10.1007/978-3-030-31964-9_4
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio UTB
dc.identifier57202468264
dc.identifier55985160800
dc.identifier57210822856
dc.description.abstractWe propose the new application of the spatio-temporal filtering (STF) method, which is a detection of visual evoked potentials applied to brain-computer interfaces (BCI). STF aims in creating a new, enhanced channel basing on the current and the neighbouring samples from all the input channels. The new channel of the better quality facilitates quick detection of visual evoked potential in the EEG recording by reducing number of averaging operations. The BCI experiments include precise information on the times the specific events took place. This feature allowed us to design very accurately the learning step which is based on generalized eigendecomposition and aims in determining the spatio-temporal filter weights. STF based algorithm allows to achieve good results for enhancement and detection of visual evoked potentials applied for brain-computer interfaces. Advantageous classification accuracies obtained with the use of combined spatial and temporal approach suggest the method can contribute to improvement of the existing solutions and stimulate development of more accurate and faster EEG based interfaces between machines and humans. © 2020, Springer Nature Switzerland AG.
dc.languageeng
dc.publisherSpringer
dc.relation2 October 2019 through 3 October 2019
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075905215&doi=10.1007%2f978-3-030-31964-9_4&partnerID=40&md5=9c60e2a3b0cb717d0df3e7345b03dfad
dc.source6th International Conference on Man-Machine Interactions, ICMMI 2019
dc.titleSpatio-Temporal Filtering for Evoked Potentials Detection


Este ítem pertenece a la siguiente institución