dc.contributorEscalante H.J.
dc.contributorMontes-y-Gomez M.
dc.contributorSegura A.
dc.contributorde Dios Murillo J.
dc.creatorRodríguez E.A.
dc.creatorEstrada F.E.
dc.creatorTorres W.C.
dc.creatorSantos J.C.M.
dc.date.accessioned2020-03-26T16:32:44Z
dc.date.accessioned2022-09-28T20:13:54Z
dc.date.available2020-03-26T16:32:44Z
dc.date.available2022-09-28T20:13:54Z
dc.date.created2020-03-26T16:32:44Z
dc.date.issued2016
dc.identifierLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 259-270
dc.identifier9783319479545
dc.identifier03029743
dc.identifierhttps://hdl.handle.net/20.500.12585/8999
dc.identifier10.1007/978-3-319-47955-2_22
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio UTB
dc.identifier57203489577
dc.identifier57191835839
dc.identifier57191844192
dc.identifier26325154200
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3723243
dc.description.abstractSevere Maternal Morbidity is a public health issue. It may occur during pregnancy, delivery, or puerperium due to conditions (hypertensive disorders, hemorrhages, infections and others) that put in risk the women’s or baby’s life. These conditions are really difficult to detect at an early stage. In response to the above, this work proposes using several machine learning techniques, which are considered most relevant in a bio-medical setting, in order to predict the risk level for Severe Maternal Morbidity in patients during pregnancy. The population studied correspond to pregnant women receiving prenatal care and final attention at E.S.E Clínica de Maternidad Rafael Calvo in Cartagena, Colombia. This paper presents the preliminary results of an ongoing project, as well as methods and materials considered for the construction of the learning models. © Springer International Publishing AG 2016.
dc.languageeng
dc.publisherSpringer Verlag
dc.relation23 November 2016 through 25 November 2016
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84994065492&doi=10.1007%2f978-3-319-47955-2_22&partnerID=40&md5=b77298054334f8966266596a659625f0
dc.source15th Ibero-American Conference on Advances in Artificial Intelligence, IBERAMIA 2016
dc.titleEarly prediction of severe maternal morbidity using machine learning techniques


Este ítem pertenece a la siguiente institución