es | en | pt | fr
    • Presentación
    • Países
    • Instituciones
    • Participa
        JavaScript is disabled for your browser. Some features of this site may not work without it.
        Ver ítem 
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        • Ver ítem
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        • Ver ítem

        A machine learning model for occupancy rates and demand forecasting in the hospitality industry

        Fecha
        2016
        Registro en:
        Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 201-211
        9783319479545
        03029743
        https://hdl.handle.net/20.500.12585/8994
        10.1007/978-3-319-47955-2_17
        Universidad Tecnológica de Bolívar
        Repositorio UTB
        55782426500
        57191841375
        http://repositorioslatinoamericanos.uchile.cl/handle/2250/3722338
        Autor
        Caicedo-Torres W.
        Payares F.
        Institución
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        Resumen
        Occupancy rate forecasting is a very important step in the decision-making process of hotel planners and managers. Popular strategies as Revenue Management feature forecasting as a vital activity for dynamic pricing, and without accurate forecasting, errors in pricing will negatively impact hotel financial performance. However, having accurate enough forecasts is no simple task for a wealth of reasons, as the inherent variability of the market, lack of personnel with statistical skills, and the high cost of specialized software. In this paper, several machine learning techniques were surveyed in order to construct models to forecast daily occupancy rates for a hotel, given historical records of bookings and occupation. Several approaches related to dataset construction and model validation are discussed. The results obtained in terms of the Mean Absolute Percentage Error (MAPE) are promising, and support the use of machine learning models as a tool to help solve the problem of occupancy rates and demand forecasting. © Springer International Publishing AG 2016.
        Materias

        Mostrar el registro completo del ítem


        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018
         

        EXPLORAR POR

        Instituciones
        Fecha2011 - 20202001 - 20101951 - 20001901 - 19501800 - 1900

        Explorar en Red de Repositorios

        Países >
        Tipo de documento >
        Fecha de publicación >
        Instituciones >

        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018