dc.creatorCaicedo W.
dc.creatorQuintana Álvarez, Moisés Ramón
dc.creatorPinzón H.
dc.date.accessioned2020-03-26T16:32:57Z
dc.date.available2020-03-26T16:32:57Z
dc.date.created2020-03-26T16:32:57Z
dc.date.issued2012
dc.identifierLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 7637 LNAI, pp. 221-230
dc.identifier9783642346538
dc.identifier03029743
dc.identifierhttps://hdl.handle.net/20.500.12585/9102
dc.identifier10.1007/978-3-642-34654-5_23
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio UTB
dc.identifier56341358400
dc.identifier55783129400
dc.identifier55782490400
dc.description.abstractThe differential diagnosis of endemic hemorrhagic fevers in tropical countries is by no means an easy task for medical practitioners. Several diseases often overlap with others in terms of signs and symptoms, thus making this diagnosis a difficult, error-prone process. Machine Learning algorithms possess some useful qualities to tackle this kind of pattern recognition problems. In this paper, a neural-network-based approach to the differential diagnosis of Dengue Fever, Leptospirosis and Malaria, using the Adaptive Resonance Theory Map (ARTMAP) family is discussed. The use of an Artificial Immune System (CLONALG) led to the identification of a subset of symptoms that enhanced the performance of the classifiers considered. Training, validation and testing phases were conducted using a dataset consisting of medical charts from patients treated in the last 10 years at Napoleón Franco Pareja Children Hospital in Cartagena, Colombia. Results obtained on the test set are promising, and support the feasibility of this approach. © Springer-Verlag Berlin Heidelberg 2012.
dc.languageeng
dc.publisherSpringer Verlag
dc.relationCartagena de Indias
dc.relation13 November 2012 through 16 November 2012
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84906654078&doi=10.1007%2f978-3-642-34654-5_23&partnerID=40&md5=28abcb7b52766f4d2de66fc2dcb420af
dc.sourceScopus2-s2.0-84906654078
dc.source13th Ibero-American Conference on Advancesin Artificial Intelligence, IBERAMIA 2012
dc.titleDifferential diagnosis of hemorrhagic fevers using ARTMAP


Este ítem pertenece a la siguiente institución