dc.creatorMontoya O.D.
dc.creatorGil-González W.
dc.creatorGarces A.
dc.date.accessioned2020-03-26T16:33:05Z
dc.date.accessioned2022-09-28T20:10:35Z
dc.date.available2020-03-26T16:33:05Z
dc.date.available2022-09-28T20:10:35Z
dc.date.created2020-03-26T16:33:05Z
dc.date.issued2019
dc.identifierElectric Power Systems Research; Vol. 169, pp. 18-23
dc.identifier03787796
dc.identifierhttps://hdl.handle.net/20.500.12585/9156
dc.identifier10.1016/j.epsr.2018.12.008
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio UTB
dc.identifier56919564100
dc.identifier57191493648
dc.identifier36449223500
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3721716
dc.description.abstractIn this paper, we address the optimal power flow problem in dc grids (OPF-DC). Our approach is based on sequential quadratic programming which solves the problem associated with non-convexity of the model. We propose two different linearizations and compare them to a non-linear algorithm. The first model is a Newton-based linearization which takes the Jacobian of the power flow as a linearization for the optimization stage, and the second model uses the nodal currents as auxiliary variables to linearize over the inequality constraints. Simulation results in radial and meshed grids demonstrate the efficiency of the proposed methodology and allow finding the same solution given by the exact nonlinear representation of the OPF-DC problem. © 2018 Elsevier B.V.
dc.languageeng
dc.publisherElsevier Ltd
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85058962996&doi=10.1016%2fj.epsr.2018.12.008&partnerID=40&md5=5d7e0d6890ebfa62d8ba875956c3b1e4
dc.titleSequential quadratic programming models for solving the OPF problem in DC grids


Este ítem pertenece a la siguiente institución