dc.contributor
dc.contributorCappellato L.
dc.contributorFerro N.
dc.contributorLosada D.E.
dc.contributorMuller H.
dc.creatorPuertas E.
dc.creatorMoreno-Sandoval L.G.
dc.creatorPlaza-Del-Arco F.M.
dc.creatorAlvarado‑Valencia, Jorge Andres
dc.creatorPomares-Quimbaya A.
dc.creatorAlfonso Ureña-López L.
dc.date.accessioned2020-03-26T16:33:10Z
dc.date.available2020-03-26T16:33:10Z
dc.date.created2020-03-26T16:33:10Z
dc.date.issued2019
dc.identifierCEUR Workshop Proceedings; Vol. 2380
dc.identifier16130073
dc.identifierhttps://hdl.handle.net/20.500.12585/9191
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio UTB
dc.identifier57202285682
dc.identifier57194828933
dc.identifier57191078469
dc.identifier8738428200
dc.identifier57203852380
dc.identifier56986551200
dc.description.abstractUnfortunately, in social networks, software bots or just bots are becoming more and more common because malicious people have seen their usefulness to spread false messages, spread rumors and even manipulate public opinion. Even though the text generated by users in social networks is a rich source of information that can be used to identify different aspects of its authors, not being able to recognize which users are truly humans and which are not, is a big drawback. In this work, we describe the properties of our multilingual classification model submitted for PAN2019 that is able to recognize bots from humans, and females from males. This solution extracted 18 features from the user's posts and applying a machine learning algorithm obtained good performance results. © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
dc.languageeng
dc.publisherCEUR-WS
dc.relation9 September 2019 through 12 September 2019
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85070510020&partnerID=40&md5=fcc69ef587023e644e71d9b5f6e5be01
dc.source20th Working Notes of CLEF Conference and Labs of the Evaluation Forum, CLEF 2019
dc.titleBots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019


Este ítem pertenece a la siguiente institución