dc.contributor | Figueroa-Garcia J.C. | |
dc.contributor | Duarte-Gonzalez M. | |
dc.contributor | Jaramillo-Isaza S. | |
dc.contributor | Orjuela-Canon A.D. | |
dc.contributor | Diaz-Gutierrez Y. | |
dc.creator | De Leon V. | |
dc.creator | Alcazar Y. | |
dc.creator | Villa Ramírez, José Luis | |
dc.date.accessioned | 2020-03-26T16:33:07Z | |
dc.date.available | 2020-03-26T16:33:07Z | |
dc.date.created | 2020-03-26T16:33:07Z | |
dc.date.issued | 2019 | |
dc.identifier | Communications in Computer and Information Science; Vol. 1052, pp. 523-533 | |
dc.identifier | 9783030310189 | |
dc.identifier | 18650929 | |
dc.identifier | https://hdl.handle.net/20.500.12585/9170 | |
dc.identifier | 10.1007/978-3-030-31019-6_44 | |
dc.identifier | Universidad Tecnológica de Bolívar | |
dc.identifier | Repositorio UTB | |
dc.identifier | 57212008502 | |
dc.identifier | 57212005233 | |
dc.identifier | 55498635300 | |
dc.description.abstract | Industrial Internet of Things has become a reality in many kind of industries. In this paper, We explore the case of high quantity of raw data generated by a machine. In the aforementioned case is not viable store and process the data in a traditional Internet of Things architecture. For this case, We use an architecture based on edge computing and Industrial Internet of Things concepts and apply them to a case of machine monitoring for predictive maintenance. The proof of concept shows the potential benefits in real industrial applications. © 2019, Springer Nature Switzerland AG. | |
dc.language | eng | |
dc.publisher | Springer | |
dc.relation | 16 October 2019 through 18 October 2019 | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075644036&doi=10.1007%2f978-3-030-31019-6_44&partnerID=40&md5=a3ce01c10e2bb04764c4bb875b31115f | |
dc.source | 6th Workshop on Engineering Applications, WEA 2019 | |
dc.title | Use of Edge Computing for Predictive Maintenance of Industrial Electric Motors | |