dc.creatorMontoya, Oscar Danilo
dc.creatorGil-González, Walter
dc.creatorDomínguez Jiménez, Juan Antonio
dc.creatorMolina-Cabrera, Alexander
dc.creatorGiral-Ramírez, Diego Armando
dc.date.accessioned2020-11-04T21:34:22Z
dc.date.available2020-11-04T21:34:22Z
dc.date.created2020-11-04T21:34:22Z
dc.date.issued2020-10-26
dc.identifierMontoya, O.D.; Gil-González, W.; Dominguez-Jimenez, J.A.; Molina-Cabrera, A.; Giral-Ramírez, D.A. Global Stabilization of a Reaction Wheel Pendulum: A Discrete-Inverse Optimal Formulation Approach via A Control Lyapunov Function. Symmetry 2020, 12, 1771.
dc.identifierhttps://hdl.handle.net/20.500.12585/9544
dc.identifierhttps://www.mdpi.com/2073-8994/12/11/1771
dc.identifier10.3390/sym12111771
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio Universidad Tecnológica de Bolívar
dc.description.abstractThis paper deals with the global stabilization of the reaction wheel pendulum (RWP) in the discrete-time domain. The discrete-inverse optimal control approach via a control Lyapunov function (CLF) is employed to make the stabilization task. The main advantages of using this control methodology can be summarized as follows: (i) it guarantees exponential stability in closed-loop operation, and (ii) the inverse control law is optimal since it minimizes the cost functional of the system. Numerical simulations demonstrate that the RWP is stabilized with the discrete-inverse optimal control approach via a CLF with different settling times as a function of the control gains. Furthermore, parametric uncertainties and comparisons with nonlinear controllers such as passivity-based and Lyapunov-based approaches developed in the continuous-time domain have demonstrated the superiority of the proposed discrete control approach. All of these simulations have been implemented in the MATLAB software.
dc.languageeng
dc.publisherCartagena de Indias
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.sourceSymmetry 2020 , 12 (11), 1771, Vol 12 no 11
dc.titleGlobal stabilization of a reaction wheel pendulum: A discrete-inverse optimal formulation approach via a control lyapunov function


Este ítem pertenece a la siguiente institución