dc.creatorBarrios E.M.
dc.creatorMarrugo A.G.
dc.creatorMillán M.S.
dc.date.accessioned2020-03-26T16:33:05Z
dc.date.accessioned2022-09-28T20:07:49Z
dc.date.available2020-03-26T16:33:05Z
dc.date.available2022-09-28T20:07:49Z
dc.date.created2020-03-26T16:33:05Z
dc.date.issued2019
dc.identifier2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings
dc.identifier9781728114910
dc.identifierhttps://hdl.handle.net/20.500.12585/9157
dc.identifier10.1109/STSIVA.2019.8730253
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio UTB
dc.identifier57209542195
dc.identifier24329839300
dc.identifier7201466399
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3720379
dc.description.abstractIn the field of ophthalmology, retinal images are essential for the diagnosis of many diseases. These images are acquired with a device called the retinal camera. However, often small dust particles in the sensor produce image artifacts that can be confused with small lesions, such as micro-aneurysms. The digital removal of artifacts can be understood as an inpainting process in which a set of pixels are replaced with a value obtained from the surrounding area. In this paper, we propose a methodology based on the sparse representations and dictionary learning for the removal of artifacts in retinal images. We test our method on real retinal images coming from the clinical setting with actual dust artifacts. We compare our restoration results with a diffusion-based inpainting technique. Encouraging experimental results show that our method can successfully remove the artifacts, while assuring the continuity of the retinal structures, like blood vessels. © 2019 IEEE.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation24 April 2019 through 26 April 2019
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068035770&doi=10.1109%2fSTSIVA.2019.8730253&partnerID=40&md5=44dee9e1fd305fcd98e966b26cb4f4cb
dc.sourceScopus2-s2.0-85068035770
dc.source22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019
dc.titleLRemoving Dust Artifacts in Retinal Images via Dictionary Learning and Sparse-Based Inpainting


Este ítem pertenece a la siguiente institución