dc.creatorGil-González W.
dc.creatorMontoya O.D.
dc.creatorHolguín E.
dc.creatorGarces A.
dc.creatorGrisales-Noreña L.F.
dc.date.accessioned2020-03-26T16:33:06Z
dc.date.accessioned2022-09-28T20:07:10Z
dc.date.available2020-03-26T16:33:06Z
dc.date.available2022-09-28T20:07:10Z
dc.date.created2020-03-26T16:33:06Z
dc.date.issued2019
dc.identifierJournal of Energy Storage; Vol. 21, pp. 1-8
dc.identifier2352152X
dc.identifierhttps://hdl.handle.net/20.500.12585/9165
dc.identifier10.1016/j.est.2018.10.025
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio UTB
dc.identifier57191493648
dc.identifier56919564100
dc.identifier57204572827
dc.identifier36449223500
dc.identifier55791991200
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3720043
dc.description.abstractA mathematical optimization approach for the optimal operation focused on the economic dispatch for dc microgrid with high penetration of distributed generators and energy storage systems (ESS) via semidefinite programming (SDP) is proposed in this paper. The SDP allows transforming the nonlinear and non-convex characteristics of the economic dispatch problem into a convex approximation which is easy for implementation in specialized software, i.e., CVX. The proposed mathematical approach contemplates the efficient operation of a dc microgrid over a period of time with variable energy purchase prices, which makes it a practical methodology to apply in real-time operating conditions. A nonlinear autoregressive exogenous (NARX) model is employed for training an artificial neural network (ANN) for forecasting solar radiation and wind speed for renewable generation integration and dispatch considering periods of prediction of 0.5 h. Four scenarios are proposed to analyze the inclusion of ESS in a dc microgrid for economic dispatch studies. Additionally, the results are compared with GAMS commercial optimization package, which allows validating the accuracy and quality of the proposed optimizing methodology. © 2018 Elsevier Ltd
dc.languageeng
dc.publisherElsevier Ltd
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85056222022&doi=10.1016%2fj.est.2018.10.025&partnerID=40&md5=58ea9fbf0cbef7e0364b3d51354c7119
dc.titleEconomic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model


Este ítem pertenece a la siguiente institución