dc.contributorGruca A.
dc.contributorCzachorski T.
dc.contributorHarezlak K.
dc.contributorKozielski S.
dc.contributorPiotrowska A.
dc.contributorCzachorski T.
dc.creatorKotas, Marian
dc.creatorLeski J.
dc.creatorMoroń T.
dc.creatorGuzmán J.G.
dc.date.accessioned2020-03-26T16:32:35Z
dc.date.available2020-03-26T16:32:35Z
dc.date.created2020-03-26T16:32:35Z
dc.date.issued2018
dc.identifierAdvances in Intelligent Systems and Computing; Vol. 659, pp. 207-216
dc.identifier9783319677910
dc.identifier21945357
dc.identifierhttps://hdl.handle.net/20.500.12585/8913
dc.identifier10.1007/978-3-319-67792-7_21
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio UTB
dc.identifier55985160800
dc.identifier7004127726
dc.identifier57021964300
dc.identifier57195996744
dc.description.abstractWe have developed a procedure for hierarchical agglomerative clustering of time series data. To measure the dissimilarity between these data, we use classically the Euclidean distance or we apply the costs of the series nonlinear alignment (time warping). In the latter approach, we use the classical costs or the modified ones. The modification consists in matching short signal segments instead of single signal samples. The procedure is applied to a few datasets from the internet archive of time series. In this archive, the series of the same classes possess visual similarity but their time evolution is often different (the characteristic waves have different location within the individual signals). Therefore the use of the Euclidean distance as the dissimilarity measure gives poor results. After time warping, the nonlinearly aligned signals match each other better, and therefore the total cost of the alignment appears to be a much more effective measure. It results in higher values of the Purity index used to evaluate the results of clustering. In most cases, the proposed modification of the alignment costs definition leads to still higher values of the index. © 2018, Springer International Publishing AG.
dc.languageeng
dc.publisherSpringer Verlag
dc.relation3 October 2017 through 6 October 2017
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85030788309&doi=10.1007%2f978-3-319-67792-7_21&partnerID=40&md5=e468edc333362f58b3c61973e1e7dfff
dc.source5th International Conference on Man-Machine Interactions, ICMMI 2017
dc.titleHierarchical agglomerative clustering of time-warped series


Este ítem pertenece a la siguiente institución