dc.creatorArias Amaya, Fabián
dc.creatorMalakhaltsev M.
dc.date.accessioned2020-03-26T16:32:33Z
dc.date.available2020-03-26T16:32:33Z
dc.date.created2020-03-26T16:32:33Z
dc.date.issued2018
dc.identifierLobachevskii Journal of Mathematics; Vol. 39, Núm. 5; pp. 623-633
dc.identifier19950802
dc.identifierhttps://hdl.handle.net/20.500.12585/8879
dc.identifier10.1134/S1995080218050013
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio UTB
dc.identifier57076963500
dc.identifier6507151476
dc.description.abstractprincipal G-bundle with singularities is a principal bundle π: P¯ → M with structure group G¯ which reduces to a subgroup G ⊂ G¯ on the set M \ Σ, where M is an n-dimensional compact manifold and Σ ⊂ M is a k-dimensional submanifold. For example, a vector field on an n-dimensional Riemannian manifold M defines reduction of the orthonormal frame bundle of M to the subgroup O(n − 1) ⊂ O(n) on the set M \ Σ, where Σ is the set of zeros of this vector field. The aim of this paper is to construct topological invariants of principal bundles with singularities. To do this we apply the obstruction theory to the sectionM → P¯ /Gcorresponding to the reduction and obtain the topological invariant as a class in Hn−k(M,M \ Σ; πn−k−1(G¯ /G)). We study the properties of this invariants and, in particular, consider cases k = 0 y k = n − 1. © 2018, Pleiades Publishing, Ltd.
dc.languageeng
dc.publisherPleiades Publishing
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85049590504&doi=10.1134%2fS1995080218050013&partnerID=40&md5=bce3246b966ea8a5b62709e9331e2607
dc.titleTopological Invariants of Principal G-Bundles with Singularities


Este ítem pertenece a la siguiente institución