dc.contributor | Ortiz Beltrán, Ariel | |
dc.contributor | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001459925 | |
dc.contributor | https://www.researchgate.net/profile/Ariel_Ortiz_Beltran | |
dc.contributor | Grupo de Investigación Tecnologías de Información - GTI | |
dc.creator | Arias Trillos, Yhary Estefanía | |
dc.date.accessioned | 2020-07-27T19:19:09Z | |
dc.date.accessioned | 2022-09-28T19:26:26Z | |
dc.date.available | 2020-07-27T19:19:09Z | |
dc.date.available | 2022-09-28T19:26:26Z | |
dc.date.created | 2020-07-27T19:19:09Z | |
dc.date.issued | 2019 | |
dc.identifier | http://hdl.handle.net/20.500.12749/7053 | |
dc.identifier | instname:Universidad Autónoma de Bucaramanga - UNAB | |
dc.identifier | reponame:Repositorio Institucional UNAB | |
dc.identifier | repourl:https://repository.unab.edu.co | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3719208 | |
dc.description.abstract | La detección de cáncer de tiroides es un proceso que en la actualidad se realiza mediante la interpretación manual que realizan radiólogos especialistas, estas se clasifican utilizando una prueba de tamizaje (discriminatoria) conocida como EU- TIRADS 2017 [2], que determina el grado de malignidad del nódulo tiroideo. La escasez de profesionales y la creciente demanda de este tipo de estudios plantea el problema de la automatización a través de algoritmos de aprendizaje de máquina como los basados en Deep Learning y específicamente, las Redes Neuronales Convolucionales, que han sido probadas anteriormente con éxito para la clasificación de otro tipo de imágenes médicas. En un trabajo anterior, con un dataset de 2000 imágenes balanceado entre 4 categorías (TI-RADS2 - TI-RADS5) se logró una medida de precisión (accuracy) cercana del 65% y una pérdida logarítmica (cross-entropy loss) cercana a 0.78. Sin embargo, este artículo plantea el estudio exploratorio para una posible optimización del algoritmo a través de diferentes pruebas medibles en su parametrización. Las variables que serán ajustadas son: El número de capas convolucionales, el tamaño de la máscara de convolución, las funciones de activación, el número de neuronas en la capa densa, el uso de más capas densas para el aprendizaje, el uso de dropouts aleatorios para controlar el sobreajuste (overfitting), entre otros. La medición comparativa se realiza a través de los valores de precisión, pérdida, la matriz de confusión, y el área bajo la curva ROC. Al final del documento se describe la mejor combinación de los parámetros evaluados y las observaciones pertinentes. | |
dc.language | spa | |
dc.publisher | Universidad Autónoma de Bucaramanga UNAB | |
dc.publisher | Facultad Ingeniería | |
dc.publisher | Pregrado Ingeniería de Sistemas | |
dc.relation | [1] Chapter 1: Supervised Learning and Naive Bayes Classification — Part 2 (Coding). (2017). Retrieved from https://medium.com/machine-learning101/chapter-1supervised-learning-and-naive-bayes-classification-part-2coding-5966f25f1475 | |
dc.relation | [2] clinicalkey.es. (2018). Thyroid Imaging. clinicalkey. Retrieved from https://wwwclinicalkey-es.aure.unab.edu.co/service/content/pdf/watermarked/3s2.0B9780323189071000792.pdf?locale=es_ES | |
dc.relation | [3] clinicalkey.es. (2018). Thyroid Neoplasia. Retrieved from https://wwwclinicalkeyes.aure.unab.edu.co/service/content/pdf/watermarked/3s2.0B9780323189071000925.pdf?locale=es_ES | |
dc.relation | [4] ClinicalKey.es. (2018). The Thyroid Gland. Estados Unidos. Retrieved from https://www-clinicalkey- es.aure.unab.edu.co/service/content/pdf/watermarked/3- s2.0B9780323401715000195.pdf?locale=es_ES | |
dc.relation | [5] Department of Computer Science. (1999). Correlation-based Feature Selection for Machine Learning. Hamilton, NewZealand. Retrieved from https://www.lri.fr/~pierres/donn%E9es/save/these/articles/lprqueue/hall99correlationb ased.pdf | |
dc.relation | [6] Department of Computer Science University of Waikato. (1999). Feature Selection for Machine Learning: Comparing a Correlation-based Filter Approach to the Wrapper. New Zealand: waikato. Retrieved from http://www.aaai.org/Papers/FLAIRS/1999/FLAIRS99-042.pdf | |
dc.relation | [7] ESMERILADO - Definición - Significado. (2018). Retrieved from https://diccionario.motorgiga.com/esmerilado | |
dc.relation | [8] Exámenes PET CT y RM: ¿Qué son y cómo usarlos en la medicina diagnóstica?. (2015). Retrieved from http://www.mv.com.br/es/blog/examenes- -pet-ct-y-rm---que-son-y-como-usarlos-en-la-medicina-diagnosticar | |
dc.relation | [9] Medicina nuclear: SPECT y PET en tumores primarios del Sistema Nervioso | NeuroWikia. (2010). Retrieved from http://www.neurowikia.es/content/medicina-nuclear-spect-y-pet-en-tumoresprimariosdel-sn | |
dc.relation | [10] Northside Radiology Associates. (2016). MIBG scintiscan. Atlanta: Editorial team. Retrieved from https://medlineplus.gov/ency/article/003830.htm | |
dc.relation | [11] Positron. (2018). Retrieved from https://en.wikipedia.org/wiki/Positron | |
dc.relation | [12] Pruebas para detectar el cáncer de tiroides. (2016). Retrieved from https://www.cancer.org/es/cancer/cancer-de-tiroides/detecciondiagnosticoclasificacion-por-etapas/como-se-diagnostica.html | |
dc.relation | [13] University of Washington School of Medicine. (2016). Gammagrafía de la tiroides. Seattle: Editorial Director y A.D.A.M. Editorial team. Retrieved from https://medlineplus.gov/spanish/ency/article/003829.htm | |
dc.relation | [14] working paper series. (2000). Correlation - based feature selection ffor discrete and numeric class Machine Learning. New Zealand. Retrieved from https://researchcommons.waikato.ac.nz/bitstream/handle/10289/1024/uow-cswp- 2000-08.pdf?sequence=1&isAllowed=y | |
dc.relation | [15] Yodo-131. (2018). Retrieved from https://es.wikipedia.org/wiki/Yodo-131 | |
dc.relation | [16] ¿Qué es una API REST? - Idento. (2018). Retrieved from https://www.idento.es/blog/desarrollo-web/que-es-una-api-rest/ | |
dc.relation | [17] Cloud AutoML - Custom Machine Learning Models | AutoML | Google Cloud. (2018). Retrieved from https://cloud.google.com/automl/ | |
dc.relation | [18] Convolutional Neural Networks for Visual Recognition. (2018). Retrieved from http://cs231n.github.io/convolutional-networks/ | |
dc.relation | [19] general, M. (2018). Salarios de Médico/a general en Colombia | Indeed.com. Retrieved from https://co.indeed.com/salaries/M%C3%A9dico/a-generalSalaries | |
dc.relation | [20] Journal of Physics: Conference Series. (2016). Recent development of feature extraction and classification multispectral/hyperspectral images: a systematic literature review. Retrieved from http://iopscience.iop.org/article/10.1088/17426596/801/1/012045/pdf | |
dc.relation | [21] Judith Marcin, M. (2018). MRI Scans: Definition, uses, and procedure. Retrieved from https://www.medicalnewstoday.com/articles/146309.php | |
dc.relation | [22] Judith Marcin, M. (2018). MRI Scans: Definition, uses, and procedure. Retrieved from https://www.medicalnewstoday.com/articles/146309.php | |
dc.relation | [21] Principal Component Analysis [PCA]. (2017). Retrieved from https://medium.com/100-days-of-algorithms/day-92-pca-bdb66840a8fb | |
dc.relation | [22] ProClass Software - 2018 Reviews, Pricing & Demo. (2018). Retrieved from https://www.softwareadvice.com/registration/proclass-profile/ | |
dc.relation | [23] ProClass Software - 2018 Reviews, Pricing & Demo. (2018). Retrieved from https://www.softwareadvice.com/registration/proclass-profile/ | |
dc.relation | [24] Purves, D., Augustine, G., Fitzpatrick, D., Katz, L., LaMantia, A., McNamara, J., & Williams, S. (2018). Types of Eye Movements and Their Functions. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK10991/ | |
dc.relation | [25] Robust image hashing using ring partition-PGNMF and local features. (2016). Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118381/ | |
dc.relation | [26] School of Electronics and Control Engineering Chang'an. (2012). Hyperspectral Image Classification Based on Spectral-Spatial Feature Extraction. Xi’an, China. Retrieved from https://ieeexplore- ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7958808&tag=1 | |
dc.relation | [27] sistemas, I. (2018). Salarios de Ingeniero/a en sistemas en Colombia | Indeed.com. Retrieved from https://co.indeed.com/salaries/Ingeniero/a-ensistemas-Salaries | |
dc.relation | [26] What is a data set? - Quora. (2017). Retrieved from https://www.quora.com/What-is-adata-set | |
dc.relation | [27] Brownlee, J. (2016). What is Deep Learning? Retrieved from https://machinelearningmastery.com/what-is-deep-learning | |
dc.relation | [27] Brownlee, J. (2016). What is Deep Learning? Retrieved from https://machinelearningmastery.com/what-is-deep-learning | |
dc.relation | [29] Raicea, R. (2018). Want to know how Deep Learning works? Here’s a quick guide for everyone. Retrieved from https://medium.freecodecamp.org/want-toknow-how-deeplearning-works-heres-a-quick-guide-for-everyone1aedeca88076 | |
dc.relation | [30] Tiempo, C. (2018). Sueldo de un profesional con posgrado. Retrieved from https://www.portafolio.co/economia/empleo/un-trabajador-con-posgrado-ganaenpromedio-3-3-millones-mas-que-un-bachiller-512462 | |
dc.relation | [31] School of Electronics and Control Engineering Chang'an University (2017). Hyperspectral Image Classification Based on SpectralSpatial Feature Extraction. Xi’an, China. Retrieved from https://ieeexplore-ieeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7958808 | |
dc.relation | [32] School of Electronics and Control Engineering. (2013). Using Nonnegative Matrix Factorization with Projected Gradient for Hyperspectral Images Feature Extraction. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=6566423&ta g=1 | |
dc.relation | [33] Dharmsinh Desai University. (2009). Project Classification Using Soft Computing. Nadiad, Gujarat. Retrieved from https://ieeexplore- ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=5376511&ta g=1 | |
dc.relation | [34] Dharmsinh Desai University. (2009). Project Classification Using Soft Computing. Nadiad, Gujarat. Retrieved from https://ieeexplore- ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=5376511&ta g=1 | |
dc.relation | [35] Department of Computer Science California State Polytechnic University. (2016). Oculomotor Plant Feature Extraction from Human Saccadic Eye Movements. Pomona, USA. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=8424698 | |
dc.relation | [36] Bharathidasan College of Arts & Science. (2016). Fusion of Big Data and Neural Networks for Predicting Thyroid. Tamilnadu, India. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7955223 | |
dc.relation | [36] Bharathidasan College of Arts & Science. (2016). Fusion of Big Data and Neural Networks for Predicting Thyroid. Tamilnadu, India. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7955223 | |
dc.relation | [37] Bernard, O., Lalande, A., Zotti, C., & Cervenansky, F. (2018). Deep Learning Techniques for Automatic MRI Cardiac Multi-structures Segmentation and Diagnosis: Is the Problem Solved? Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=8360453 | |
dc.relation | [38] School of Informatics and Computing, Indiana University. (2015). Temporal Pattern and Association Discovery of Diagnosis Codes using Deep Learning. IN, USA. Retrieved from https://ieeexploreieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7349719&ta g=1 | |
dc.relation | [39] Amazon Rekognition – Videos e imágenes – AWS. (2018). Retrieved from https://aws.amazon.com/es/rekognition/?hp=tile&soexp=below | |
dc.relation | [40] AMI de aprendizaje profundo de Amazon. (2018). Retrieved from https://aws.amazon.com/es/machine-learning/amis/?hp=tile&soexp=below | |
dc.relation | [41] Amazon Polly. (2018). Retrieved from https://aws.amazon.com/es/polly/?hp=tile&so-exp=below pruébelo, V. (2018). Chatbot | Deep learning | Amazon Lex. Retrieved from https://aws.amazon.com/es/lex/?hp=tile&soexp=below | |
dc.relation | [42] Amazon Translate – Traducción de máquina neural – AWS. (2018). Retrieved from https://aws.amazon.com/es/translate/?hp=tile&soexp=below | |
dc.relation | [43] What is Watson. (2018). Retrieved from https://www.ibm.com/watson/about/index.html ©2018 IEEE. (2018). Delta Univ. for Science and Technology. Gamasa City, Egypt, from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=8358209 | |
dc.relation | [44] National Chung Hsing University. (2009). Optimal Grouping by using Genetic Algorithm and Support Vector Machines. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=5420079 | |
dc.relation | [45] EEE TRANSACTIONS ON BIOMEDICAL ENGINEERING. (2010). Thyroid Segmentation and Volume Estimation in Ultrasound Images. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp tp=&arnumber=5415666&tag=1 | |
dc.relation | [46] IEEE. (2017). Tiroid Kanserinde BilgisayarlÕ Tomografi Temelli Yeni Öznitelikler Computerized Tomography Based Novel Features in Thyroid Cancer. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=8238050 | |
dc.relation | [47] IEEE. (2009). Computer-Aided Diagnosis of Thyroid Malignancy Using an Artificial Immune System Classification Algorithm. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=4539694 | |
dc.relation | [48] AIMBE. (2012). Automated Benign & Malignant Thyroid Lesion Characterization and Classification in 3D Contrast-Enhanced Ultrasound. IEEE. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=6345965 | |
dc.relation | [49] The department of thyroid surgery. (2012). Discussion about misdiagnosed reasons and reoperation of thyroid cancer. Changchun city, China. Retrieved from https://ieeexplore- ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=6291383 | |
dc.relation | [50] Department of Electronics and Computer Engineering, Gifu University Yanagido. (1992). Neural Network Approach for the ComputerAided Diagnosis of Coronary Artery Diseases in Nuclear Medicine. Retrieved from https://ieeexplore-ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=227168 | |
dc.relation | [51] Shandong Provincial Key Laboratory of Computer Networks. (2016). Web Identification Image Recognition Based on Deep Learning. Jinan, China. Retrieved from https://ieeexplore-ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7726261 | |
dc.relation | [52] College of Computer Science and Technology. (2012). Interface Schema Matching with the Machine Learning for Deep Web. Harbin, P.R. China. Retrieved from https://ieeexplore-ieee.org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=6526056 | |
dc.relation | [53] Towards Data Science. (2019). Metrics to Evaluate your Machine Learning Algorithm. [online] Available at: https://towardsdatascience.com/metrics-to-evaluate-your-machinelearning-algorithm-f10ba6e38234 [Accessed 5 Jun. 2019]. | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
dc.rights | Abierto (Texto Completo) | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.title | Sistema web de reconocimiento y clasificación de patologías a través de imágenes médicas basado en técnicas de aprendizaje de máquina | |