dc.contributorOrtiz Beltrán, Ariel
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001459925
dc.contributorhttps://www.researchgate.net/profile/Ariel_Ortiz_Beltran
dc.contributorGrupo de Investigación Tecnologías de Información - GTI
dc.creatorArias Trillos, Yhary Estefanía
dc.date.accessioned2020-07-27T19:19:09Z
dc.date.accessioned2022-09-28T19:26:26Z
dc.date.available2020-07-27T19:19:09Z
dc.date.available2022-09-28T19:26:26Z
dc.date.created2020-07-27T19:19:09Z
dc.date.issued2019
dc.identifierhttp://hdl.handle.net/20.500.12749/7053
dc.identifierinstname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifierreponame:Repositorio Institucional UNAB
dc.identifierrepourl:https://repository.unab.edu.co
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3719208
dc.description.abstractLa detección de cáncer de tiroides es un proceso que en la actualidad se realiza mediante la interpretación manual que realizan radiólogos especialistas, estas se clasifican utilizando una prueba de tamizaje (discriminatoria) conocida como EU- TIRADS 2017 [2], que determina el grado de malignidad del nódulo tiroideo. La escasez de profesionales y la creciente demanda de este tipo de estudios plantea el problema de la automatización a través de algoritmos de aprendizaje de máquina como los basados en Deep Learning y específicamente, las Redes Neuronales Convolucionales, que han sido probadas anteriormente con éxito para la clasificación de otro tipo de imágenes médicas. En un trabajo anterior, con un dataset de 2000 imágenes balanceado entre 4 categorías (TI-RADS2 - TI-RADS5) se logró una medida de precisión (accuracy) cercana del 65% y una pérdida logarítmica (cross-entropy loss) cercana a 0.78. Sin embargo, este artículo plantea el estudio exploratorio para una posible optimización del algoritmo a través de diferentes pruebas medibles en su parametrización. Las variables que serán ajustadas son: El número de capas convolucionales, el tamaño de la máscara de convolución, las funciones de activación, el número de neuronas en la capa densa, el uso de más capas densas para el aprendizaje, el uso de dropouts aleatorios para controlar el sobreajuste (overfitting), entre otros. La medición comparativa se realiza a través de los valores de precisión, pérdida, la matriz de confusión, y el área bajo la curva ROC. Al final del documento se describe la mejor combinación de los parámetros evaluados y las observaciones pertinentes.
dc.languagespa
dc.publisherUniversidad Autónoma de Bucaramanga UNAB
dc.publisherFacultad Ingeniería
dc.publisherPregrado Ingeniería de Sistemas
dc.relation[1] Chapter 1: Supervised Learning and Naive Bayes Classification — Part 2 (Coding). (2017). Retrieved from https://medium.com/machine-learning101/chapter-1supervised-learning-and-naive-bayes-classification-part-2coding-5966f25f1475
dc.relation[2] clinicalkey.es. (2018). Thyroid Imaging. clinicalkey. Retrieved from https://wwwclinicalkey-es.aure.unab.edu.co/service/content/pdf/watermarked/3s2.0B9780323189071000792.pdf?locale=es_ES
dc.relation[3] clinicalkey.es. (2018). Thyroid Neoplasia. Retrieved from https://wwwclinicalkeyes.aure.unab.edu.co/service/content/pdf/watermarked/3s2.0B9780323189071000925.pdf?locale=es_ES
dc.relation[4] ClinicalKey.es. (2018). The Thyroid Gland. Estados Unidos. Retrieved from https://www-clinicalkey- es.aure.unab.edu.co/service/content/pdf/watermarked/3- s2.0B9780323401715000195.pdf?locale=es_ES
dc.relation[5] Department of Computer Science. (1999). Correlation-based Feature Selection for Machine Learning. Hamilton, NewZealand. Retrieved from https://www.lri.fr/~pierres/donn%E9es/save/these/articles/lprqueue/hall99correlationb ased.pdf
dc.relation[6] Department of Computer Science University of Waikato. (1999). Feature Selection for Machine Learning: Comparing a Correlation-based Filter Approach to the Wrapper. New Zealand: waikato. Retrieved from http://www.aaai.org/Papers/FLAIRS/1999/FLAIRS99-042.pdf
dc.relation[7] ESMERILADO - Definición - Significado. (2018). Retrieved from https://diccionario.motorgiga.com/esmerilado
dc.relation[8] Exámenes PET CT y RM: ¿Qué son y cómo usarlos en la medicina diagnóstica?. (2015). Retrieved from http://www.mv.com.br/es/blog/examenes- -pet-ct-y-rm---que-son-y-como-usarlos-en-la-medicina-diagnosticar
dc.relation[9] Medicina nuclear: SPECT y PET en tumores primarios del Sistema Nervioso | NeuroWikia. (2010). Retrieved from http://www.neurowikia.es/content/medicina-nuclear-spect-y-pet-en-tumoresprimariosdel-sn
dc.relation[10] Northside Radiology Associates. (2016). MIBG scintiscan. Atlanta: Editorial team. Retrieved from https://medlineplus.gov/ency/article/003830.htm
dc.relation[11] Positron. (2018). Retrieved from https://en.wikipedia.org/wiki/Positron
dc.relation[12] Pruebas para detectar el cáncer de tiroides. (2016). Retrieved from https://www.cancer.org/es/cancer/cancer-de-tiroides/detecciondiagnosticoclasificacion-por-etapas/como-se-diagnostica.html
dc.relation[13] University of Washington School of Medicine. (2016). Gammagrafía de la tiroides. Seattle: Editorial Director y A.D.A.M. Editorial team. Retrieved from https://medlineplus.gov/spanish/ency/article/003829.htm
dc.relation[14] working paper series. (2000). Correlation - based feature selection ffor discrete and numeric class Machine Learning. New Zealand. Retrieved from https://researchcommons.waikato.ac.nz/bitstream/handle/10289/1024/uow-cswp- 2000-08.pdf?sequence=1&isAllowed=y
dc.relation[15] Yodo-131. (2018). Retrieved from https://es.wikipedia.org/wiki/Yodo-131
dc.relation[16] ¿Qué es una API REST? - Idento. (2018). Retrieved from https://www.idento.es/blog/desarrollo-web/que-es-una-api-rest/
dc.relation[17] Cloud AutoML - Custom Machine Learning Models | AutoML | Google Cloud. (2018). Retrieved from https://cloud.google.com/automl/
dc.relation[18] Convolutional Neural Networks for Visual Recognition. (2018). Retrieved from http://cs231n.github.io/convolutional-networks/
dc.relation[19] general, M. (2018). Salarios de Médico/a general en Colombia | Indeed.com. Retrieved from https://co.indeed.com/salaries/M%C3%A9dico/a-generalSalaries
dc.relation[20] Journal of Physics: Conference Series. (2016). Recent development of feature extraction and classification multispectral/hyperspectral images: a systematic literature review. Retrieved from http://iopscience.iop.org/article/10.1088/17426596/801/1/012045/pdf
dc.relation[21] Judith Marcin, M. (2018). MRI Scans: Definition, uses, and procedure. Retrieved from https://www.medicalnewstoday.com/articles/146309.php
dc.relation[22] Judith Marcin, M. (2018). MRI Scans: Definition, uses, and procedure. Retrieved from https://www.medicalnewstoday.com/articles/146309.php
dc.relation[21] Principal Component Analysis [PCA]. (2017). Retrieved from https://medium.com/100-days-of-algorithms/day-92-pca-bdb66840a8fb
dc.relation[22] ProClass Software - 2018 Reviews, Pricing & Demo. (2018). Retrieved from https://www.softwareadvice.com/registration/proclass-profile/
dc.relation[23] ProClass Software - 2018 Reviews, Pricing & Demo. (2018). Retrieved from https://www.softwareadvice.com/registration/proclass-profile/
dc.relation[24] Purves, D., Augustine, G., Fitzpatrick, D., Katz, L., LaMantia, A., McNamara, J., & Williams, S. (2018). Types of Eye Movements and Their Functions. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK10991/
dc.relation[25] Robust image hashing using ring partition-PGNMF and local features. (2016). Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118381/
dc.relation[26] School of Electronics and Control Engineering Chang'an. (2012). Hyperspectral Image Classification Based on Spectral-Spatial Feature Extraction. Xi’an, China. Retrieved from https://ieeexplore- ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7958808&tag=1
dc.relation[27] sistemas, I. (2018). Salarios de Ingeniero/a en sistemas en Colombia | Indeed.com. Retrieved from https://co.indeed.com/salaries/Ingeniero/a-ensistemas-Salaries
dc.relation[26] What is a data set? - Quora. (2017). Retrieved from https://www.quora.com/What-is-adata-set
dc.relation[27] Brownlee, J. (2016). What is Deep Learning? Retrieved from https://machinelearningmastery.com/what-is-deep-learning
dc.relation[27] Brownlee, J. (2016). What is Deep Learning? Retrieved from https://machinelearningmastery.com/what-is-deep-learning
dc.relation[29] Raicea, R. (2018). Want to know how Deep Learning works? Here’s a quick guide for everyone. Retrieved from https://medium.freecodecamp.org/want-toknow-how-deeplearning-works-heres-a-quick-guide-for-everyone1aedeca88076
dc.relation[30] Tiempo, C. (2018). Sueldo de un profesional con posgrado. Retrieved from https://www.portafolio.co/economia/empleo/un-trabajador-con-posgrado-ganaenpromedio-3-3-millones-mas-que-un-bachiller-512462
dc.relation[31] School of Electronics and Control Engineering Chang'an University (2017). Hyperspectral Image Classification Based on SpectralSpatial Feature Extraction. Xi’an, China. Retrieved from https://ieeexplore-ieeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7958808
dc.relation[32] School of Electronics and Control Engineering. (2013). Using Nonnegative Matrix Factorization with Projected Gradient for Hyperspectral Images Feature Extraction. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=6566423&ta g=1
dc.relation[33] Dharmsinh Desai University. (2009). Project Classification Using Soft Computing. Nadiad, Gujarat. Retrieved from https://ieeexplore- ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=5376511&ta g=1
dc.relation[34] Dharmsinh Desai University. (2009). Project Classification Using Soft Computing. Nadiad, Gujarat. Retrieved from https://ieeexplore- ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=5376511&ta g=1
dc.relation[35] Department of Computer Science California State Polytechnic University. (2016). Oculomotor Plant Feature Extraction from Human Saccadic Eye Movements. Pomona, USA. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=8424698
dc.relation[36] Bharathidasan College of Arts & Science. (2016). Fusion of Big Data and Neural Networks for Predicting Thyroid. Tamilnadu, India. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7955223
dc.relation[36] Bharathidasan College of Arts & Science. (2016). Fusion of Big Data and Neural Networks for Predicting Thyroid. Tamilnadu, India. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7955223
dc.relation[37] Bernard, O., Lalande, A., Zotti, C., & Cervenansky, F. (2018). Deep Learning Techniques for Automatic MRI Cardiac Multi-structures Segmentation and Diagnosis: Is the Problem Solved? Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=8360453
dc.relation[38] School of Informatics and Computing, Indiana University. (2015). Temporal Pattern and Association Discovery of Diagnosis Codes using Deep Learning. IN, USA. Retrieved from https://ieeexploreieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7349719&ta g=1
dc.relation[39] Amazon Rekognition – Videos e imágenes – AWS. (2018). Retrieved from https://aws.amazon.com/es/rekognition/?hp=tile&soexp=below
dc.relation[40] AMI de aprendizaje profundo de Amazon. (2018). Retrieved from https://aws.amazon.com/es/machine-learning/amis/?hp=tile&soexp=below
dc.relation[41] Amazon Polly. (2018). Retrieved from https://aws.amazon.com/es/polly/?hp=tile&so-exp=below pruébelo, V. (2018). Chatbot | Deep learning | Amazon Lex. Retrieved from https://aws.amazon.com/es/lex/?hp=tile&soexp=below
dc.relation[42] Amazon Translate – Traducción de máquina neural – AWS. (2018). Retrieved from https://aws.amazon.com/es/translate/?hp=tile&soexp=below
dc.relation[43] What is Watson. (2018). Retrieved from https://www.ibm.com/watson/about/index.html ©2018 IEEE. (2018). Delta Univ. for Science and Technology. Gamasa City, Egypt, from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=8358209
dc.relation[44] National Chung Hsing University. (2009). Optimal Grouping by using Genetic Algorithm and Support Vector Machines. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=5420079
dc.relation[45] EEE TRANSACTIONS ON BIOMEDICAL ENGINEERING. (2010). Thyroid Segmentation and Volume Estimation in Ultrasound Images. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp tp=&arnumber=5415666&tag=1
dc.relation[46] IEEE. (2017). Tiroid Kanserinde BilgisayarlÕ Tomografi Temelli Yeni Öznitelikler Computerized Tomography Based Novel Features in Thyroid Cancer. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=8238050
dc.relation[47] IEEE. (2009). Computer-Aided Diagnosis of Thyroid Malignancy Using an Artificial Immune System Classification Algorithm. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=4539694
dc.relation[48] AIMBE. (2012). Automated Benign & Malignant Thyroid Lesion Characterization and Classification in 3D Contrast-Enhanced Ultrasound. IEEE. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=6345965
dc.relation[49] The department of thyroid surgery. (2012). Discussion about misdiagnosed reasons and reoperation of thyroid cancer. Changchun city, China. Retrieved from https://ieeexplore- ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=6291383
dc.relation[50] Department of Electronics and Computer Engineering, Gifu University Yanagido. (1992). Neural Network Approach for the ComputerAided Diagnosis of Coronary Artery Diseases in Nuclear Medicine. Retrieved from https://ieeexplore-ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=227168
dc.relation[51] Shandong Provincial Key Laboratory of Computer Networks. (2016). Web Identification Image Recognition Based on Deep Learning. Jinan, China. Retrieved from https://ieeexplore-ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7726261
dc.relation[52] College of Computer Science and Technology. (2012). Interface Schema Matching with the Machine Learning for Deep Web. Harbin, P.R. China. Retrieved from https://ieeexplore-ieee.org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=6526056
dc.relation[53] Towards Data Science. (2019). Metrics to Evaluate your Machine Learning Algorithm. [online] Available at: https://towardsdatascience.com/metrics-to-evaluate-your-machinelearning-algorithm-f10ba6e38234 [Accessed 5 Jun. 2019].
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleSistema web de reconocimiento y clasificación de patologías a través de imágenes médicas basado en técnicas de aprendizaje de máquina


Este ítem pertenece a la siguiente institución