dc.contributor | Pacheco Sandoval, Leonardo Esteban | |
dc.contributor | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001478220 | |
dc.contributor | https://scholar.google.es/citations?hl=es&user=yZ1HEiIAAAAJ | |
dc.contributor | https://orcid.org/0000-0001-7262-382X | |
dc.contributor | https://www.scopus.com/authid/detail.uri?authorId=56117105700 | |
dc.contributor | https://www.researchgate.net/profile/Leonardo_Esteban_Pacheco_Sandoval | |
dc.creator | Jaramillo Villarreal, Laura Catalina | |
dc.date.accessioned | 2020-10-01T14:39:36Z | |
dc.date.available | 2020-10-01T14:39:36Z | |
dc.date.created | 2020-10-01T14:39:36Z | |
dc.date.issued | 2020 | |
dc.identifier | http://hdl.handle.net/20.500.12749/7265 | |
dc.identifier | instname:Universidad Autónoma de Bucaramanga - UNAB | |
dc.identifier | reponame:Repositorio Institucional UNAB | |
dc.identifier | repourl:https://repository.unab.edu.co | |
dc.description.abstract | El siguiente trabajo de grado se realizo con base al semillero de investigación Prospectiva Energética" y el programa `4+1' entre la Universidad Autónoma de Bucaramanga (Unab) y Oregon Institute of Technology (OIT) para cumplir con el requisito de grado en Ingeniería en Energía en la Unab y establecer una ruta de continuidad hacia estudios de maestría en el exterior con el programa de Master of Science in Renewable Energy Engineering { MSREE de OIT.
En cumplimiento parcial del programa `4+1', este trabajo de grado propone el desarrollo de una planifi cación energética en Colombia mediante un modelo económico de energía para pronosticar la demanda de energía por sectores de consumo, ademas, promueve la implementación de análisis prospectivos para estudiar la demanda energética del país. Utilizando el análisis de regresión múltiple, técnicas de prospectiva y \multi-criteria decision-making (MCDM)", este proyecto proporciona una metodología sistemática para identifi car variables económicas que impactan la demanda de energía. Los sectores de transporte, comercial, industrial, residencial, agricultura, minería y construcción se consideran dentro de este estudio para ejecutar la metodología. Los resultados muestran que el sector de minería y construcción no refleja un alto consumo en la demanda total de energía de Colombia y esos sectores están dictados no solo por variables económicas. Además, la demanda de energía residencial, de transporte y comercial está altamente correlacionada con el factor económico. | |
dc.language | spa | |
dc.publisher | Universidad Autónoma de Bucaramanga UNAB | |
dc.publisher | Pregrado Ingeniería en Energía | |
dc.relation | [1] Energy Charter Secretariat, Colombia energy investment report, Brussels, Belgium, 2016. | |
dc.relation | [2] UPME, 'UPME Unidad de Planeaci on Minero energ etica'. Unidad de Planeacion Energetica de Colombia, Excel Sheet. Retrieved 4 Jun 2020, from http://www1.upme. gov.co/InformacionCifras/Paginas/BalanceEnergetico.aspx | |
dc.relation | [3] XM S.A. E.S.P. Informe de Operaci on del SIN y Administraci on del Mercado 2013, 2013. Retrieved 4 Jun 2020, fromhttp://informesanuales.xm.com.co/2013/ SitePages/operacion/Default.aspx | |
dc.relation | [4] Burak Omer Saracoglu, Long Term Electricity Demand & Peak Power Load Forecasting Variables Identi cation & Selection. Science Journal of Circuits, Systems and Signal Processing.2017; 6(2): 18-28. DOI: 10.11648/j.cssp.20170602.13 | |
dc.relation | [5] Kumar Biswajit Debnath, Monjur Mourshed. Forecasting methods in energy planning models, Renewable and Sustainable Energy Reviews. Vol.; 88. No (May.2018); p. 297- 325. | |
dc.relation | [6] UPME, MINMINAS. Proyecci on de la demanda de energ a el ectrica y potencia m axima en Colombia. Retrieved 4 Jun 2020, from http://www.siel.gov.co/siel/ documentos/documentacion/Demanda/UPME_Proyeccion_Demanda_ Energia_Electrica_Junio_2016. | |
dc.relation | [7] ISA. Home page. Retrieved 4 Jun 2020, from http://www.isa.co/en/Pages/ default.aspx | |
dc.relation | [8] Pron ostico de Demanda XM. Retrieved 4 Jun 2020, from https://www.xm.com. co/Paginas/Consumo/pronostico-de-demanda.aspx | |
dc.relation | [9] ECOPETROL, UPME, UNAB, UIS, and UPB. Prospectiva energ etica Colombia 2050 - ISBN 978-958-8956-50-3. Bucaramanga: Universidad Industrial de Santander, 2018 | |
dc.relation | [10] R. Schae er et al., Energy sector vulnerability to climate change: A review, Energy, vol. 38, no. 1, pp. 1-12, February 2012 | |
dc.relation | [11] P. H. Abreu, D. C. Silva, H. Amaro, and R. Magalhaes. Identi cation of Residential Energy Consumption Behaviors, Journal of Energy Engineering, vol. 142, no. 4, p. 04016005, Dec. 2016 | |
dc.relation | [12] DeLlano-Paza, Fernando; Calvo-Silvosaa, Anxo; Iglesias Anteloa, Susana; Soares, Isabel. Energy planning and modern portfolio theory: A review, Renewable and Sustainable Energy Reviews, Vol. 77, pp. 636-651, September 2017 | |
dc.relation | [13] S. Pfenninger, A. Hawkes, and J. Keirstead, Energy systems modeling for twenty- rst century energy challenges, Renewable and Sustainable Energy Reviews, vol. 33, pp. 74-86, May 2014 | |
dc.relation | [14] Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, Rob J Hyndman. 2016. Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond. International Journal of Forecasting, Issue: 3, Volume: 32, Page: 896- 913 | |
dc.relation | [15] Pohekar, S. D., Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energy planning - A review, Renewable and Sustainable Energy Reviews, 8(4), 365-381. DOI:10.1016/j.rser.2003.12.007 | |
dc.relation | [16] Swan, L. G.; Ugursal, V. I. Modeling of end use energy consumption in the residential sector: A review of modeling techniques, Renewable and Sustainable Energy Reviews. 2009, Vol. 13, Pages 1819-1835. | |
dc.relation | [17] Han Shih, Suchithra Rajendran. Comparison of Time Series Methods and Machine Learning Algorithms for Forecasting Taiwan Blood Services Foundation's Blood Supply. J Healthc Eng. 2019; 2019: 6123745.doi: 10.1155/2019/61237 | |
dc.relation | [18] Wolfgang Schellong. 2011. Energy Demand Analysis and Forecast. Energy Management Systems. | |
dc.relation | [19] Dmitry Kucharavy, Roland De Guio. Logistic substitution model and technological forecasting, Procedia Engineering. Vol. 9, 2011, Pages 402-416 | |
dc.relation | [20] Modis, Theodore. Forecasting energy needs with logistics, Technological Forecasting and Social Change. Vol 139, February 2019, Pages 135-143 | |
dc.relation | [21] Mart nez, Viviana; Castillo, O.L. Colombian energy planning - Neither for energy, nor for Colombia, Energy Policy. Vol.; 129. No (2019); p. 1132-1142 | |
dc.relation | [22] Unidad de planeaci on minero energ etica. Plan energ etico nacional Colombia: ideario energ etico 2050. Bogota, Colombia. January 2015. | |
dc.relation | [23] Jose Andres Suarez Diaz, Development of an Energy-Based Model for Forecasting the Energy Demand of Colombia, Oregon Institute of Technology, June 2019. | |
dc.relation | [24] Sawa, Toshiyuki; Mori, Shigeki; Yamazaki, Jun, Forecast system and method of electric power demand. U.S. Patent 9852483 B2, 26 December 2017 | |
dc.relation | [25] Harper, Karl E; Kielszewski, Elizabeth; Fox Jr, Thomas C; Manning, Paul B. Distributed Utility Resource Planning And Forecast. U.S. Patent 10250034 B2, 2 April 2019 | |
dc.relation | [26] Dannecker, Lars; Roesch, Philipp, Dynamic Online Energy Forecasting U.S. Patent 9672304 B2, 6 June 2017. | |
dc.relation | [27] Honjo, Ryoki; Tadano, Taro, Electric Power Management Apparatus And Electric Power Management Method. U.S. Patent 9588145 B2, 7 March 2007. | |
dc.relation | [28] Ko Jong-Min; Jung Nam-Joon; Kim Young-Il; Yu In-Hyeob, Load Forecasting Analysis System For Calculating Customer Baseline Load. U.S. Patent 8406935 B2, 26 March 2013. | |
dc.relation | [29] Ko Jong-Min; Jung Nam-Joon; Kim Young-Il; Yu In-Hyeob, Load Forecasting Analysis System For Calculating Customer Baseline Load. U.S. Patent 8406935 B2, 26 March 2013 | |
dc.relation | [30] Mateus Valencia, Andres Camilo. Energy Crisis in Colombia.Tecnolog a, Investigaci on y Academia, TIA. ISSN: 2344-8288 Vol. 4 No. 2 pp. 74 | |
dc.relation | [31] Amir Hossein Fakehi Khorasani, Somayeh Ahmadi, Mohammad Ali Moradi. The Impact of Energy Conservation Policies on the Projection of Future Energy Demand, Energy Technology and Policy, 2015. 2:1, 104-121, DOI: 10.1080/23317000.2015 | |
dc.relation | [32] United Nation ESCAP: Environment and Natural Resources Development Division: Scrotal Energy Demand Analysis and Longterm Forecast: Methodological Manual. MEDEE-S.No: ST/ESCAP/ 1521, 19 | |
dc.relation | [33] International Atomic Energy Agency, IAEA. Computer Tools for Comparative Assessment of Electricity Generation Options and Strategies. Vienna, Austria. | |
dc.relation | [34] Stefano Moret, V ctor Codina Girones, Michel Bierlaire, Francois Mar echal. Characterization of input uncertainties in strategic energy planning models, Applied Energy. Vol. 202, 15 September 2017. Pages 597-617 | |
dc.relation | [35] Saboohi, Y. Model for Analysis of Demand for Energy - MADE II. Institute fur Kernenergetik und Energiesysteme (IKE), University of Stuttgart, Technical Report, IKE 8-19, 1989: 0173-6892 | |
dc.relation | [36] O cial LEAP Website. Retrieved 4 Jun 2020, from https://www. energycommunity.org/default.asp?action=introduction | |
dc.relation | [37] User guide for long-range energy alternative planning system. Boston, MA, 2011 | |
dc.relation | [38] Departamento Administrativo Nacional de Estad stica, DANE. New classi cation of economic activities, Bogota. 2012. | |
dc.relation | [39] Unidad de planeaci on minero energ etica, Colombian energy balance - BECO, energy, Bogota. 2017. Retrieved 4 Jun 2020, from http://www1.upme.gov.co/ InformacionCifras/Paginas/BECOENERGTICO.aspx | |
dc.relation | [40] Departamento Administrativo Nacional de Estad stica, DANE. Technical bulletin - Gross Domestic Product (GDP) fourth quarter 2018, 2018 | |
dc.relation | [41] Departamento Administrativo Nacional de Estad stica, DANE. Technical bulletin - Gross Domestic Product (GDP) fourth quarter 2019, 2019 | |
dc.relation | [42] ANDI, Colombia: Balance 2018 and Perspectives 2019. Retrieved 4 Jun 2020 from https://imgcdn.larepublica.co/cms/2018/12/28132344/ ANDI-Balance-y-Perspectivas.pdf?w=auto; 2018 | |
dc.relation | [43] ANDI, Colombia: Balance 2019 and Perspectives 2020. Retrieved 4 Jun 2020, from http://www.andi.com.co/Uploads/ANDI%20-%20Balance%202019% 20y%20Perspectivas%202020%20-%20VF.pdf; 2019. | |
dc.relation | [44] Departamento nacional de planeaci on, enersinc. Energy Demand Situation in Colombia. Bogota, 2017. | |
dc.relation | [45] Triantaphyllou, E. (2000). Multi-Criteria Decision Making: A Comparative Study. Dordrecht, The Netherlands: Kluwer Academic Publishers (now Springer). p. 320. ISBN 978-0-7923-6607-2. | |
dc.relation | [46] Michel Godet. Manuel de prospective strat egique.Tome 1. Dunod, Paris, 2007. ISBN 978-2-10-053161-5 | |
dc.relation | [47] Michel Godet. Manuel de prospective strat egique.Tome 2. Dunod, Paris, 2007. ISBN 978-2-10-053162-2 | |
dc.relation | [48] I. BarCharts, Statistics: parameters, variables, intervals, proportions: the basic principles of statistics for introductory courses. 2005. | |
dc.relation | [49] J. C. A. Guti errez and J. F. A. Mahecha, Rep ublica de Colombia Ministerio de Minas y Energ a Unidad de Planeaci on Minero Energ etica, UPME. Subdirecci on de Planeaci on Energ etica - Grupo de Demanda Energ etica, p. 51 | |
dc.relation | [50] A. F. Paez et al., Future Scenarios and Trends of Energy Demand in Colombia using Long-range Energy Alternative Planning, vol. 7, no. 5, p. 13, 2017 | |
dc.relation | [51] Schober, Patrick MD, PhD, MMedStat; Boer, Christa PhD, MSc; Schwarte, Lothar A. MD, PhD, MBA.Correlation Coe cients: Appropriate Use and Interpretation, Anesthesia Analgesia: May 2018 - Volume 126 - Issue 5 - p 1763-1768 | |
dc.relation | [52] Richard Taylor.Interpretation of the Correlation Coe cient: A Basic ReviewVol 6, Issue 1, 1990 | |
dc.relation | [53] C. Alonso, Modelo de Regresion lineal Multiple - Econometria Universidad Carlos III de Madrid | |
dc.relation | [54] Patricia Moreno, Juan Manuel Rodriguez Poo, Alexandra Soberon. ECONOMETRIA I. El Modelo de Regresion Lineal Simple. Retrieved 4 Jun 2020, from https://ocw.unican.es/pluginfile.php/1127/course/section/ 1352/Ppt_Ch2_G942_14-15.pdf | |
dc.relation | [55] Velasco Sotomayor,G. ; Wisniewski, P. (2002) Probabilidad y Estad stica para Ingenier a y Ciencias. Editorial Thomson. | |
dc.relation | [56] Mendenhall,W. ; Wackerly,D.; Shea er, R.(2004) Estad stica Matem atica con Aplicaciones. Grupo Editorial Iberoam erica | |
dc.relation | [57] Garc a, R. (2004). Inferencia estad stica y dise~no de experimentos. Buenos Aires: Eudeba | |
dc.relation | [58] Montgomery,D. ; Peck,E. y Vinning, G. (2002). Introducci on al An alisis de Regresi on Lineal. Editorial C.E.C.S.A. | |
dc.relation | [59] Peter Gri thsa, Jack Needleman. Statistical signi cance testing and p-values: Defending the indefensible: A discussion paper and position statement. International Journal of Nursing Studies. Volume 99, November 2019, 103384 | |
dc.relation | [60] Ronald L. Wassersteina* Nicole A. Lazara. The ASA's Statement on p-Values: Context, Process, and Purpose. Pages 129-133. DOI = https://doi.org/10.1080/00031305.2016.1154108 | |
dc.relation | [61] Leenen I. La prueba de la hip otesis nula y sus alternativas: revisi on de algunas cr ticas y su relevancia para las ciencias m edicas. Inv Ed Med 2012; 1(4), Pages 225-234. | |
dc.relation | [62] Y a~nez S. La estad stica una ciencia del siglo XX. R.A. Fisher. Rev Colomb Estad stica 2000; 23(2), Pages 1-14. | |
dc.relation | [63] Sharon Einav, Ph.D, M.D, Michael O'Connor, M.D. P-values and signi cance: The null hypothesis that they are not related is correct. Journal of Critical Care. Volume 54, December 2019, Pages 159-162 | |
dc.relation | [64] Eur J Vasc Endovasc Surg. Signi cance and Limitations of the p Value. Education Section: Associate Editors Florian Dick and Gert de Borst. 2015, Volume 50, Page 815 | |
dc.relation | [65] Sterne JAC, Davey Smith G. Sifting the evidence | what's wrong with signi cance tests? BMJ 2001; 322, Pages 226-231. | |
dc.relation | [66] Michel godet. De la anticipaci on a la acci on, manual de prospectiva y estrategia. Retrieved 4 Jun 2020, from https://administracion.uexternado.edu. co/matdi/clap/De%20la%20anticipaci%C3%B3n%20a%20la%20acci%C3% B3n.pdf | |
dc.relation | [67] Unidad de planeaci on minero energ etica. Caracterizaci on energ etica del sector residencial urbano y rural en Colombia. volumen I - Metodolog a y An alisis. Bogota, CO. March 2012 | |
dc.relation | [68] Departamento nacional de planeaci on, enersinc. Energy Demand Situation in Colombia. Bogota, 2017 | |
dc.relation | [69] Unidad de planeaci on minero energ etica, UPME. Plan transitorio de abastecimiento de gas natural. Bogot a, noviembre de 2016. | |
dc.relation | [70] Rep ublica de Colombia - Ministerio de Minas y Energ a, Unidad de Planeaci on Minero Energ etica. Plan de Abastecimiento de Gas Natural Documento de Trabajo. Bogot a, diciembre de 2013. | |
dc.relation | [71] ANDI. 07 agroindustria, Hacia la transformaci on de la cadena de valor agroindustrial. 2018 | |
dc.relation | [72] FINAGRO. Perspectiva del sector agropecuario Colombiano. Bogota, August 2014. Retrieved 4 Jun 2020, from https://www.finagro.com.co/sites/default/ files/2014_09_09_perspectivas_agropecuarias.pdf | |
dc.relation | [73] Rilong Fei, Boqiang Lin. Estimates of energy demand and energy saving potential in China's agricultural sector. Energy 135 (2017) 865-875 | |
dc.relation | [74] Ministerio de minas y energ a. Sector minero en Colombia, crecimiento sostenible y competitividad. | |
dc.relation | [75] ANDI. Jaime Mauricio Concha. Una mirada al sector minero energ etico. 26 de septiembre de 2018 | |
dc.relation | [76] Andr es Casta~no, Marcelo Lu n, Miguel Atienz. A structural path analysis of Chilean mining linkages between 1995 and 2011. What are the channels through which extractive activity a ects the economy?. Resources policies 60 (2019) 106-117 | |
dc.relation | [77] Lizhen Huanga, Guri Krigsvolla, Fred Johansena, Yongping Liua, Xiaoling Zhang. Carbon emission of global construction sector. Renewable and Sustainable Energy Reviews. 81 (2018) 1906{1916 | |
dc.relation | [78] Carlos Oliveira Cruza, Patr cia Gasparb, Jorge de Brito. On the concept of sustainable sustainability: An application to the Portuguese construction sector. Journal of Building Engineering. Volume 25, September 2019, 100836 | |
dc.relation | [79] Stephan B. Bruns, Christian Gross and David I. Stern. Is There Really Granger Causality Between Energy Use and Output? Alemania, agosto de 2013. Retrieved 4 Jun 2020, from https://www.fcn.eonerc.rwth-aachen.de/global/show_ document.asp?id=aaaaaaaaaagvwas | |
dc.relation | [80] Jaganath Behera. Examined the energy-led growth hypothesis in India: evidence from time series analysis. En: Energy Economics Letters. Vol.; 2. No (2015); DOI: 10.18488/journal.82/2015.2.4/82.4.46.65 | |
dc.relation | [81] Stephan B. Bruns, Christian Gross. What if energy time series are not independent? Implications for energy-GDP causality analysis. Energy Economics. Vol.; 40, No (Nov.2013); p.753-759 | |
dc.relation | [82] Christian Gross. Explaining the (non-) causality between energy and economic growth in the U.S.|A multivariate sectoral analysis. Energy Economics. Vol.; 34, No (Mar.2012); p.489-499 | |
dc.relation | [83] Zachariadis, Theodoros. Exploring the relationship between energy use and economic growth with bivariate models: new evidence from G-7 countries. En: Energy Economics. Vol.; 29, No (May.2007); p.1233{1253 | |
dc.relation | [84] Bowden, N., Payne, J.E. The causal relationship between U.S. energy consumption and real output: a disaggregated analysis. J. Policy Model. Vol.;31. No (2009); p.180{188. | |
dc.relation | [85] Departamento Administrativo Nacional de Estad stica. Producto Interno Bruto (PIB) Hist oricos. En l nea. 2018. 18 de abril de 2019. Retrieved 4 Jun 2020, from https://www.dane.gov.co/index.php/estadisticas-por-tema/ cuentas-nacionales/cuentas-nacionales-trimestrales/ historicos-producto-interno-bruto-pib#base-2005 | |
dc.relation | [86] Understanding the energy- GDP elasticity: A sectoral approach - Paul J. Burke , Zsuzsanna Csereklyei - Energy Economics - 58 2016 199/210 M. | |
dc.relation | [87] Comisi on de regulaci on de energ a y gas. Resoluci on CREG 119 de 2007. Costo unitario de prestaci on del servicio de energ a el ectrica. Capitulo III, 21 de diciembre de 2007. | |
dc.relation | [88] Banco de Occidente. An alisis macroecon omico y sectorial: coyuntura y perspectivas Junio - 2018. Retrieved 4 Jun 2020, from https://www.bancodeoccidente.com.co/wps/wcm/connect/ banco-de-occidente/0f02cfa3-83c9-4f7e-bb2d-7ee32e20a4eb/ informe-sectorial-anif-jul-2018.pdf?MOD=AJPERES&CVID=mijQdGx | |
dc.relation | [89] Mercado de Energ a y Tarifas. Codensa | |
dc.relation | [90] Comisi on de regulaci on de energ a y gas. Resoluci on CREG 034 de 2001. Precio de Reconciliaci on Positiva de los Generadores. Art culo 1, 13 de marzo de 2011. | |
dc.relation | [91] Price and income elasticities of residential energy demand in Germany - Isabella Schultea, Peter Heindlb, - Energy Policy { Energy Policy 102 (2017) 512{528 | |
dc.relation | [92] Santiago Arango-Aramburo, Patricia Jaramillo, Yris Olaya, Ricardo Smith, Oscar J. Restrepo a, Adrian Saldarriaga-Isaza, Jessica Arias-Gaviria, Juan F. Parra, Erik R. Larsen, Luz M. Gomez-Rios, Lady Y. Castellanos. Simulating mining policies in developing countries: The case of Colombia. En: Socio-Economic Planning Sciences. Vol.; 60. No (Dic.2017); p.99-113. | |
dc.relation | [93] M onica Espinosa Valderrama, Angela In es Cadena Monroy, Eduardo Behrentz Valencia. Challenges in greenhouse gas mitigation in developing countries: A case study of the Colombian transport sector. En: Energy Policy. Vol.; 124. No (Ene.2019); p.111-122 | |
dc.relation | [94] Energy Information Administration, eia. What drives crude oil prices: Overview. En l nea. 2019. 18 de abril de 2019. Retrieved 4 Jun 2020, from https://www.eia.gov/ finance/markets/crudeoil/ | |
dc.relation | [95] Long-run and short-run relationships between oil prices, producer prices, and consumer prices: What can we learn from a permanent-transitory decomposition? - Robert J. Myers a,, Stanley R. Johnsonb, Michael Helmar c, Harry Baumes d { The Quarterly Review of Economics and Finance 67 (2018) 175{190 | |
dc.relation | [96] Does oil price volatility in uence real sector growth? Empirical evidence from Pakistan - Humaira Yasmeen , Ying Wang, Hashim Zameer, Yasir Ahmed Solangi| Energy Reports 5 (2019) 688{703 | |
dc.relation | [97] Di Mo, Rakesh Gupta, Bin Li, Tarlok Singh. The macroeconomic determinants of commodity futures volatility: Evidence from Chinese and Indian markets. En: Economic Modelling. Vol.; 70. No (Abr.2018); p. 543-560. | |
dc.relation | [98] Rihab Bedouia, Sana Braeikb, St ephane Goutted, Khaled Guesmi. On the study of conditional dependence structure between oil, gold and USD exchange rates. En: International Review of Financial Analysis. Vol.; 59. No (Oct.2018); p. 134-146. | |
dc.relation | [99] Rihab Bedouia, Sana Braieka, Khaled Guesmi, Julien Chevallier. On the conditional dependence structure between oil, gold and USD exchange rates: Nested copula based GJR-GARCH model. En: Energy Economics. Vol.; 80. No (May.2019); p. 876-889. | |
dc.relation | [100] The economic value of co-movement between oil price and exchange rate using copulabased GARCH models{ Chih-Chiang Wu a, , Huimin Chung b , Yu-Hsien Chang{ Energy Economics 34 (2012) 270{282 | |
dc.relation | [101] Engle, Robert F., GARCH 101: An Introduction to the Use of Arch/Garch Models in Applied Econometrics (October 2001). NYU Working Paper No. FIN-01-030 | |
dc.relation | [102] Banco de la Rep ublica, Departamento de Cambios Internacionales. Inversi on Extranjera Directa en Colombia. En l nea. 2012. 1 de mayo de 2019. Retrieved 4 Jun 2020, from http://www.banrep.gov.co/sites/default/files/ publicaciones/archivos/ce_dcin_inversionextranjera.pdf | |
dc.relation | [103] Banco de la rep ublica. Bolet n de indicadores econ omicos. 29 de abril de 2019 | |
dc.relation | [104] ChongmeiWang, Chu Jiayu. Analyzing on the Impact Mechanism of Foreign Direct Investment( FDI) to Energy Consumption. En: Energy Procedia. Vol.; 159. No (Feb.2019); p. 515-520. | |
dc.relation | [105] Alexander RyotaKeeley, YuichiIkeda. Determinants of foreign direct investment in wind energy in developing countries. En: Journal of Cleaner Production. Vol.; 161. No (Sep.2017); p. 1451-1458 | |
dc.relation | [106] DANE. Balanza comercial. Retrieved 4 Jun 2020, from https://www.dane.gov. co/index.php/estadisticas-por-tema/comercio-internacional/ balanza-comercial | |
dc.relation | [107] Interactions between energy and imports in Singapore: Empirical evidence from conditional error correction models{ Salih Turan Katircioglu{ Energy Policy 63 (2013) 514{520 | |
dc.relation | [108] How (a)symmetric is the response of import demand to changes in its determinants? Evidence from European energy imports{ Svetlana Fedoseeva a, Rodrigo Zeidan{Energy Economics 69 (2018) 379{394 | |
dc.relation | [109] Bustos, 2011. Trade liberalization ,exports, and technology upgrading: evidence on the impact of MERCOSUR on Argentinian rms. Am. Econ. Rev. 101 (1), 304-340 | |
dc.relation | [110] Lileeva, A., Tre er, D., 2010. Improved Access to foreign markets raises plant-level productivity for some plants. Q.J.Econ. 125 (3), 1051-1099. | |
dc.relation | [111] Roy, J., Yasar, M., 2015. Energy e ciency and exporting: evidence from rm-level data. Energy Econ. 52, 127-135 | |
dc.relation | [112] Sadorsky, P., 2012. Energy consumption, output and trade in South American. Energy Econ. 34 (2), 476-488.7 | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
dc.rights | Abierto (Texto Completo) | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.title | Desarrollo de un modelo económico de energía para pronosticar la demanda energética por sectores de consumo en Colombia | |