dc.contributorMaradey Lázaro, Jessica Gisella
dc.contributorRoa Prada, Sebastián
dc.contributorMaradey Lázaro, Jessica Gisella [0000040553]
dc.contributorMaradey Lázaro, Jessica Gisella [0000-0003-2319-1965]
dc.contributorMaradey Lázaro, Jessica Gisella [Jessica-Maradey-Lazaro]
dc.creatorForero Carrillo, Martha Patricia
dc.date.accessioned2021-08-19T20:18:05Z
dc.date.accessioned2022-09-28T19:19:55Z
dc.date.available2021-08-19T20:18:05Z
dc.date.available2022-09-28T19:19:55Z
dc.date.created2021-08-19T20:18:05Z
dc.date.issued2021-06-14
dc.identifierhttp://hdl.handle.net/20.500.12749/13918
dc.identifierinstname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifierreponame:Repositorio Institucional UNAB
dc.identifierrepourl:https://repository.unab.edu.co
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3717014
dc.description.abstractEl presente trabajo evidencia el proceso entero del proyecto “Desarrollo de chasis y carrocería de un vehículo eléctrico de recolección de cacao”. Este proyecto es una continuación del proyecto ZAMIA desarrollado por el tecnoparque sede Bucaramanga. El proyecto se dividió en tres partes que son la optimización del diseño del chasis y la carrocería, construcción y validación de estos últimos y finalmente la optimización y análisis aerodinámico del vehículo entero. Para la optimización de diseño se realizó un análisis topológico en COMSOL multiphysics del chasis asumiéndolo como una placa maciza y se obtuvieron las zonas que deben ser descartadas de la geometría. Posteriormente con el nuevo chasis se realizaron cálculos de flexión asumiéndolo como una viga sencilla y simulaciones de elementos finitos que incluyen: flexión, análisis torsional, impacto frontal, impacto lateral, impacto de volcadura y análisis modal. Con estas simulaciones se realizó una comparativa determinando las mejoras respecto al anterior chasis usando como referencia la deformación y el esfuerzo máximo en la pieza. Un proceso simular fue ejecutado en el caso de la carrocería, pero con la diferencia de que no se realizó un análisis topológico sino se hicieron modificaciones basadas en criterios de diseño mecánico tales como reducir la longitud de tubería sin apoyo. Usando el mismo esquema de simulaciones se pudo determinar nuevamente una mejoría en la carrocería. Con los diseños presentando mejoras en sus características se procedió con la construcción del chasis y la carrocería usando métodos de manufactura tradicional. Finalizado el proceso de construcción se procedió a realizar validaciones experimentales de la resistencia de los componentes. Esta validación se llevó a cabo usando de referencia las simulaciones de análisis torsional y el análisis modal. Para la validación experimental se usaron comparadores de carátula para medir deformación se obtuvo una diferencia de los resultados menores al 10% a favor del prototipo físico, y para el caso de las frecuencias propias los valores tuvieron un margen de entre el 8% más altas que en las simulaciones. La etapa final es la optimización de la aerodinámica donde después de suavizar ángulos muy pronunciados en los recubrimientos del vehículo y se eliminaron componentes donde se puedan presentar vorticidades. Subsecuentemente, se realizó una simulación de túnel de viento comparando los dos modelos de vehículo obteniendo una mejora considerable en el coeficiente de arrastre. Después de realizar todo el proceso se determinó que el vehículo tenía varios aspectos que podían mejorar el rendimiento de este tanto en peso como en resistencia.
dc.languagespa
dc.publisherUniversidad Autónoma de Bucaramanga UNAB
dc.publisherFacultad Ingeniería
dc.publisherPregrado Ingeniería Mecatrónica
dc.relation[1] Banco Mundial, «Tierras cultivables en el mundo», Banco Mundial, 2017. https://datos.bancomundial.org/indicator/AG.LND.ARBL.ZS?name_desc=false (accedido ene. 29, 2021).
dc.relation[2] FEDECACAO, «Así quedó el ranking de producción de cacao en Colombia», 2020. http://www.fedecacao.com.co/portal/index.php/es/2015-04-23-20-00-33/1193boletin-de-prensa-asi-quedo-el-ranking-de-produccion-de-cacao-en-colombia (accedido ene. 27, 2021)
dc.relation[3] TecnoParque- SENA, «Presentacion Premio Innovadores Santander». 2017
dc.relation[4] TecnoParque- SENA, «Presentacion Vehículo Utilitario». 2017
dc.relation[5] C. Criens et al., «Chapter 2 Vehicle Dynamics Modeling», Simulation, vol. 86, n.o 1314, pp. 10-28, 2008, doi: 10.1016/j.compstruc.2007.04.028.
dc.relation[6] D. Raina, R. D. Gupta, y R. K. Phanden, «Design and Development for Roll Cage of All-Terrain Vehicle», vol. 2, n.o 7, pp. 1092-1099, 20
dc.relation[7] D. Rubinstein y R. Hitron, «A detailed multi-body model for dynamic simulation of off-road tracked vehicles», J. Terramechanics, vol. 41, n.o 2-3, pp. 163-173, 2004, doi: 10.1016/j.jterra.2004.02.004
dc.relation[8] W. Popp, Karl; Schiehlen, Ground Vehicle Dynamics. 2010
dc.relation[9] R. Paine, C. Beards, P. Tucker, y D. H. Bacon, Mechanical engineering principles. 2013
dc.relation[10] G. Rill, Road Vehicle Dynamics Fundamentals and Modeling. 2012
dc.relation[11] B. Heißing y M. Ersoy, Chassis Handbook, First. Wiesbaden: Vieweg+Teubner, 2010.
dc.relation[12] J. G. Maradey Lázaro, H. S. Esteban Villegas, y B. J. Blanco Caballero, «Finite element analysis (FEA) for optimization the design of a Baja SAE chassis», en ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), ene. 2018, vol. 4A-2018, doi: 10.1115/IMECE2018-87564
dc.relation[13] C. A. Eurenius y J. Wass, «Analysis of Composite Chassis», p. 93, 2013.
dc.relation[14] W. B. Riley y A. R. George, «Design, analysis and testing of a Formula SAE car chassis», SAE Tech. Pap., n.o 724, 2002, doi: 10.4271/2002-01-3300
dc.relation[15] H. D. Velie, «Chassis Torsional Rigidity Analysis for a Formula SAE Racecar», 2015, doi: 10.1016/j.nbd.2005.05.002.
dc.relation[16] A. Anand, «Torsional analysis of the chassis and its validation through Finite Element Analysis», pp. 1-7, 2017
dc.relation[17] D. Krzikalla, A. Slíva, J. Měsíček, y J. Petrů, «On modelling of simulation model for racing car frame torsional stiffness analysis», Alexandria Eng. J., vol. 59, n.o 6, pp. 80 5123-5133, dic. 2020, doi: 10.1016/j.aej.2020.09.042.
dc.relation[18] D. Krzikalla, J. Mesicek, J. Petru, y J. Smiraus, «Analysis of Torsional Stiffness of the Frame of a Formula Student Vehicle», J Appl Mech Eng, vol. 8, n.o 1, p. 315, 2019, doi: 10.35248/2168-9873.19.8.315.
dc.relation[19] M. Herrmann, «Torsional stiffness and natural frequency analysis of a formula SAE vehicle carbón fiber reinforced polymer chasis using finite element analysis», 2016
dc.relation[20] E. Beltramo, J. Stuardi, y G. Chiappero, «Influencia de la rigidez torsional del chasis en el comportamiento dinámico de un vehículo de la categoría Súper TC 2000», Rev. FCEF y N, vol. 4, n.o 1, pp. 31-40, 2017
dc.relation[21] E. Beltramo, «Simulación Dinámica Estructural De Un Automovil De Competición», 2015.
dc.relation[22] K. Chaudhari, A. Joshi, R. Kunte, y K. Nair, «Design And Development Of Roll Cage For An All-Terrain Vehicle», n.o 24, pp. 2319-3182, 2013
dc.relation[23] D. N. Chaudhari, V. M. Makwana, y D. J. Patel, «Strength and rigidity analysis of heavy vehicle chassis for different frame cross section by analytically and FEA under various loading condition», Int. J. Adv. Res. Eng. Sci. Technol., vol. 3, n.o 5, pp. 411- 419, 2016
dc.relation[24] J. Velosa, «Aproximación de modelo metodológico sobre capacidad tecnológica para las pymes del sector metalmecánico colombiano», Univ. Nac. Colomb., pp. 1-172, 2011.
dc.relation[25] K. Deprez, D. Moshou, H. Ramon, y J. De Baerdemaeker, Comfort Improvement of Agricultural Vehicles By Passive and Semi-Active Suspensions, vol. 35, n.o 1. IFAC, 2002
dc.relation[26] K. Deprez, D. Moshou, J. Anthonis, J. De Baerdemaeker, y H. Ramon, «Improvement of vibrational comfort on agricultural vehicles by passive and semi-active cabin suspensions», Comput. Electron. Agric., vol. 49, n.o 3, pp. 431-440, 2005, doi: 10.1016/j.compag.2005.08.009
dc.relation[27] B. Guha, R. J. Haddad, y Y. Kalaani, «Performance Impact Analysis of Solar Cell Retrofitted Electric Golf Cart», pp. 12-13, 2015
dc.relation[28] M. Herrmann, «Torsional Stiffness and Natural Frequency Analysis of a Formula SAE Vehicle Carbon Fiber Reinforced Polymer Chassis using Finite Element Analysis», California Polytechnic State University, San Luis Obispo, California, 2016.
dc.relation[29] S. Aru, P. Jadhav, V. Jadhav, A. Kumar, y P. Angane, «Design, Analysis and optimization of a Multi-Tubular Space frame», Int. J. Mech. Prod. Eng. Res. Dev., vol. 4, n.o 4, pp. 37-48, 2014.
dc.relation[30] C. O. Ijagbemi, B. I. Oladapo, H. M. Campbell, y C. O. Ijagbemi, «Design and simulation of fatigue analysis for a Vehicle Suspension System (VSS) and its effect on global warming», Procedia Eng., vol. 159, n.o June, pp. 124-132, 2016, doi:10.1016/j.proeng.2016.08.135.
dc.relation[31] J. D. Camba, M. Contero, y P. Company, «Parametric CAD modeling: An analysis of strategies for design reusability», CAD Comput. Aided Des., vol. 74, pp. 18-31, 2016, doi: 10.1016/j.cad.2016.01.003
dc.relation[32] D. S. Mevawala, M. P. Sharma, D. a Patel, y a Darshan, «Stress Analysis of Roll Cage for an All Terrain Vehicle», vol. 2014, pp. 49-53, 2014
dc.relation[33] A. K. Mohanty, A. Jambhulkar, y P. B. Sarode, «Design and Development of Roll Cage : -A Review», pp. 1736-1740, 2018
dc.relation[34] K. Amadori, M. Tarkian, J. Ölvander, y P. Krus, «Flexible and robust CAD models for design automation», Adv. Eng. Informatics, vol. 26, n.o 2, pp. 180-195, 2012, doi: 10.1016/j.aei.2012.01.004.
dc.relation[35] V. Jadhav, «DESIGN , ANALYSIS AND OPTIMIZATION OF A MULTI- TUBULAR SPACE», n.o September, 2015
dc.relation[36] «Scopus preview - Scopus - Welcome to Scopus». https://www.scopus.com/home.uri (accedido abr. 23, 2021).
dc.relation[37] L. Morello, L. R. Rossini, G. Pia, y A. Tonoli, The Automotive Body. Volume I: Components Design. 2011.
dc.relation[38] J. Happian-Smith, An intoduction to Modern Vehicle Design. 2002.
dc.relation[39] D. C. Barton y J. D. Fieldhouse, Automotive chassis engineering. 2018
dc.relation[40] Comsol, «Studies and Solver Updates - COMSOL® 5.5 Release Highlights». https://www.comsol.pt/release/5.5/studies-and-solvers (accedido ene. 29, 2021)
dc.relation[41] ABC Motor, «El Túnel de Viento de Audi: vanguardia de la aerodinámica», 2015. https://www.abc.es/motor-reportajes/20150820/abci-audi-tunel-viento- 201508201341.html (accedido ene. 29, 2021).
dc.relation[42] «Mechatronische Systeme: Grundlagen - Rolf Isermann - Google Books», R. Iserman. https://books.google.com.co/books?hl=en&lr=&id=paEfBAAAQBAJ&oi=fnd&pg= PA1&dq=Entwicklungsmethodik+für+Mechatronische+Systeme,”&ots=WW76nwn OIP&sig=3-2AvnkyjKIx59rV1o422Of74mk#v=onepage&q=Entwicklungsmethodik für Mechatronische Systeme%2C”&f=false (accedido ene. 29, 2021).
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleDesarrollo de chasis y carrocería de un vehículo eléctrico para recolección de cacao


Este ítem pertenece a la siguiente institución