dc.contributor | Guerrero Santander, César Darío | |
dc.contributor | Guerrero Santander, César Darío [0000809357] | |
dc.contributor | Guerrero Santander, César Darío [_YgBOOcAAAAJ] | |
dc.contributor | Guerrero Santander, César Darío [0000-0002-3286-6226] | |
dc.contributor | Guerrero Santander, César Darío [23094317500] | |
dc.contributor | Guerrero Santander, César Darío [Cesar-Guerrero-2] | |
dc.contributor | Guerrero Santander, César Darío [cesar-d-guerrero] | |
dc.creator | Salcedo Morillo, Dixon David | |
dc.date.accessioned | 2020-06-26T21:34:54Z | |
dc.date.available | 2020-06-26T21:34:54Z | |
dc.date.created | 2020-06-26T21:34:54Z | |
dc.date.issued | 2011 | |
dc.identifier | http://hdl.handle.net/20.500.12749/3467 | |
dc.identifier | instname:Universidad Autónoma de Bucaramanga - UNAB | |
dc.identifier | reponame:Repositorio Institucional UNAB | |
dc.description.abstract | Este proyecto está enmarcado dentro de la línea de investigación en Telemática del grupo de investigación en tecnologías de la información de la UNAB se planteo como objetivo implementar en lenguaje C un algoritmo de clustering en el estimador de ancho de banda Traceband y evaluar impacto del algoritmo en cuanto a la exactitud en la estimación comparada con el programa original, en un escenario controlado que emule el comportamiento de una red en la internet. Para lograr esto, primero se aborda el estudio de mecanismos de clustering y así determinar el que más se ajuste a la problemática de estimación de ancho de banda disponible, después se estudiará el código de Traceband, tanto en el Sender como el Receiver, para determinar el punto en el cual de tiene que aplicar la técnica de clustering seleccionada. Después de tener definido lo anterior, se implementará el código de clustering en lenguaje C y probar la estimación sobre un testbed de evaluación; y así observar la efectividad del algoritmo implementado haciendo pruebas con diferente tipo y cantidad de tráfico cruzado. Para las pruebas, se crea una infraestructura de red que permite evaluar estimadores de ancho de banda disponibles simulando el comportamiento del internet (Testbed). En dicha infraestructura, se evalúa, el Traceband con y sin el K-means, utilizando Mgen para la generación de tráfico.
El estimar el ancho de banda disponible es un problema estudiando por investigadores a nivel mundial dada la necesidad de contar con esta información para mejorar la operación de varias aplicaciones de red tales como el cumplimiento de los acuerdos de nivel de servicio, gestión de redes, ingeniería de tráfico y en tiempo real de los recursos de aprovisionamiento, control de flujo y congestión, la detección rápida de fallas, ataques de red y control de admisión [3].
La implementación del K-means en el Traceband, permite determinar, de que manera la agrupación de los datos de la estimación, puede ayudar a mejorar la exactitud de la estimación del ancho de banda disponible en una infraestructura de red. Adicionando los beneficios que provee, el poder conocer y administrar estos factores críticos, que son relevantes en el rendimiento de la red y los servicios que ésta brinda.
Actualmente dentro de la bibliografía revisada, no se encuentra registro de la implementación de una técnica de clustering, dentro de una herramienta de estimación de ancho de banda disponible, como Traceband. Esto contrasta con la gran cantidad de trabajos y contribuciones realizados, en la implementación y uso de las técnicas de clustering en varias áreas de la ciencia; siendo muy efectivas a la hora del análisis de los resultados | |
dc.language | spa | |
dc.publisher | Universidad Autónoma de Bucaramanga UNAB | |
dc.publisher | Facultad Ingeniería | |
dc.publisher | Maestría en Software Libre | |
dc.relation | Salcedo Morillo, Dixon David, Guerrero Santander, Cesar Darío (2011). Implementación y evaluación de un algoritmo de clustering en un estimador de ancho de banda disponible. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB, Universitat Oberta de Catalunya UOC | |
dc.relation | A.K. Jain, M.N. Murty, P.J. Flynn. “Data Clustering: A Review”, Sept, 1999. [En línea]. Disponible: en: http://www.docstoc.com/docs/19887391/Data-Clustering-A-Review. | |
dc.relation | Bottou, L., Bengio, Y. Convergence Properties of the K-means Algorithms. Advances in Neural Information Processing”. Systems. MTI Press, 1995. | |
dc.relation | C. Blake, D. Katabi, S. Katti, “Cross-Traffic: Noise or Data?” Computer Science and Artificial Intelligence Laboratory@MIT, No registra. [En línea]. Disponible: http://nms.lcs.mit.edu/~dina/pub/multiQ.pdf. [Consultado: 10 de mayo de 2010]. | |
dc.relation | C. Guerrero, "Traceband: Available Bandidth Estimation based on a Hidden Markov Model", Ph.D. dissertation, Murdoch University, Murdoch, WA, Australia, 1999.tesis de la University of South Florida., FL, EEUU, 2009. | |
dc.relation | Carrasquilla Marín, Ulloque Rodríguez, Guerrero Cesar, “Evaluación de técnicas de medición de ancho de Banda disponible “abet’s” http://www.colombiaaprende.edu.co/html/mediateca/1607/articles-109353_archivo.pdf#page=86 | |
dc.relation | Cesar Guerrero, Miguel A Labrador, "On the Applicability of Available Bandwidth Estimation Techniques and Tools". En: Estados Unidos Computer Communications, ISSN: 0140-3664 ed: v.33 fasc.1 p.11 - 22, 2010[Consultado: 22 de abril de 2010]. | |
dc.relation | Cesar Guerrero, Miguel A. Labrador, "Traceband: A fast, low overhead and accurate tool for available bandwidth estimation and monitoring". En: Estados Unidos Computer Networks-The International Journal Of Computer And Telecommunications Networking, ISSN: 1389-1286 ed: v.54 fasc.6 p.977 - 990, 2010. [Consultado: 20 de abril de 2010]. | |
dc.relation | Cristina García Cambronero, Irene Gómez Moreno, “Algoritmos de aprendizaje: KNN & KMEANS”. 14/12/2008. [En línea]. Disponible: www.it.uc3m.es/jvillena/irc/practicas/08-09/06.pdf [Consultado: 20 de mayo de 2010]. | |
dc.relation | DUBES, R. C. 1987. How many clusters are best?—an experiment. Pattern Recogn. 20, 6 (Nov. 1, 1987), 645–663. | |
dc.relation | Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley & Sons, New York, NY. 1973. | |
dc.relation | E. Hernández, “Algoritmo de clustering basado en entropía para descubrir grupos en atributos de tipo mixto”, agosto de 2006. [En línea]. Disponible: http://www.cs.cinvestav.mx/Estudiantes/TesisGraduados/2006/tesisEdnaHernandez.pdf. Consultado: [5 de enero de 2011]. | |
dc.relation | Fayyad,U. M., Piatetsky-Shapiro, G., Smyth P., Uthurusamy, R.: Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996. | |
dc.relation | Filtro K-means (K-Medias). [Web en línea]. Disponible en: <http://celtico-celtico.blogspot.com/>. | |
dc.relation | Fisher, D.: Knowlwdge Acquisition via Incremental Conceptual Clustering. Machine Learning, Vol. 2, No. 2 (1987) 139-172. | |
dc.relation | Garre, Cuadrado, Sicilia, “Comparación de diferentes algoritmos de clustering en la estimación de coste en el desarrollo de software,” Universidad del País Vasco, 23 Jun 2005. [En línea]. Disponible: http://www.sc.ehu.es/jiwdocoj/remis/docs/GarreAdis05.pdf. [Consultado: 3 de mayo de 2010]. | |
dc.relation | Google imágenes, [Documento en línea]. Disponible en: <http://www.google.com.co/imgres?imgurl=http://bp0.blogger.com/_FZfs7LCzurk /RbWgQZC04NI/AAAAAAAAADA/8v2zl6wbIB4/s400/flowchart.jpg> | |
dc.relation | Gustavo Mesa, “Cadenas de markov, una sencilla Aplicación”. Mayo de 2007. [En línea]. Disponible: http://www.revistamemorias.com/articulos9/cadenasdemarkov.pdf [Consultado: 23 de junio de 2010]. | |
dc.relation | Hamerly, G., Elkan, C. “Alternatives to the K-means Algorithm that Find Better Clusterings”. Proc. 11th International Conf. On Information and Knowledge Management CIKM’02. ACM. Virginia, USA (2002). | |
dc.relation | Implementación-de-k-means-en-opencv. [Web en línea]. Disponible en: <reyesalfonso.blogspot.com/.../implementacion-de-k-means-en-opencv.html>. | |
dc.relation | J. Pérez, M. F. Henriques, R. Pazos, L. Cruz3, G. Reyes, J. Salinas, A. Mexicano “Mejora al algoritmo de agrupamiento K-means mediante un nuevo criterio de convergencia y su aplicación a bases de datos poblacionales de cáncer”. Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), México, Secretaría de Saúde do Estado de Pernambuco, Brasil, Instituto Tecnológico de Ciudad Madero, México. | |
dc.relation | Julián Moreno, “Aprendizaje de máquina”. No registra. [En línea]. Disponible: http://pisis.unalmed.edu.co/cursos/material/3004653/1/Presentacion.ppt [Consultado: 18 de abril de 2010]. | |
dc.relation | Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A “Local Search Approximation Algorithm for k-Means Clustering” Proc. 18th Annual ACM Symposium on Computational Geometry (SoCG’02). Barcelona, Spain (2002) 10-18. | |
dc.relation | Kanungo, T., Netanyahu, N.S., Wu, A.Y.: “An Efficient Kmeans Clustering Algorithm: Analysis and Implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence”, Vol. 24, No. 7 (2002). | |
dc.relation | K-means_clustering Disponible en: <http://en.wikipedia.org/wiki/K-means_clustering> | |
dc.relation | K-Mediods. Disponible en internet: <http://en.wikipedia.org/wiki/K-medoids> | |
dc.relation | L.R. Rabiner, “A tutorial on hidden markov models and selected applications in speech recognition”, Proceedings of the IEEE 77 (2) (1989) 257–286. | |
dc.relation | Lakshminarayanan, Padmananbhan, Padhye, “Estimaciones del Ancho de Banda en redes de Banda Ancha”, Instituto de Ingeniería Eléctrica, No registra. [En línea]. Disponible: http://iie.fing.edu.uy/ense/asign/perfredes/trabajos/trabajos_2004/EstimacionBW/EstimacionBW.pdf. [Consultado: 8 de mayo de 2010]. | |
dc.relation | López Yoel, “Evaluación de técnicas de estimación de ancho de banda disponible en una red de computadoras”. Mayo de 2010. [Archivo PDF]. [Consultado: 20 de mayo de 2010] | |
dc.relation | M. Zorrilla, “Procesamiento Paralelo y Distribuido Aplicado al Almacenamiento y Recuperación de Información Documental”, 2001. [En línea]. Disponible: http://www.tesisenred.net/TESIS_UC/AVAILABLE/TDR-0927110-130601//TesisMZP.pdf. Consultado: [3 de enero de 2011]. | |
dc.relation | MacQueen, J.: Some Methods for Classification and Analysis of Multivariate Observations. Proc. 5th Berkeley Symp. Math. Statistics and Probability, 1:281-297, 1967. | |
dc.relation | Martínez Francisco., Quetglás Gregorio. “Introducción a la programación estructurada en C.” Maite Simon, 2003. [E-book] Disponible en: http://books.google.es/ | |
dc.relation | Mehmed, K.: Data Mining: Concepts, Models, Methods, and Algorithms. John Wiley & Sons. 2003. | |
dc.relation | MGen. [Web en línea]. Disponible en: <http://celtico-celtico.blogspot.com/>. | |
dc.relation | O. Sánchez, Algunos métodos para medir distancias a los centroides, [En línea]. Disponible: http://omarsanchez.net/Documents/distancias_totales.pdf [Consultado: 22 de diciembre de 2010]. | |
dc.relation | O. Sánchez. “Modelos, Control y sistema de visión”, [Web en línea]. Disponible en: <http://omarsanchez.net/kmeans.aspx>. | |
dc.relation | Paola Bermolen, “Ancho de Banda Efectivo para Flujos Markovianos” http://www.fing.edu.uy/iie/investigacion/grupos/artes/publicaciones/Paola.pdf | |
dc.relation | Pelleg, D., Moore, A.: X-means: “Extending K-means with Efficient Estimation of the Number of Clusters”. Proc. 17th International Conf. on Machine Learning (2000). | |
dc.relation | Peña, J.M., Lozano, J.A., Larrañaga, P. “An Empirical Comparison of Four Initialization Methods for the K-Means Algorithm”. Dept. of Computer Science and Artificial Intelligence, University of the Basque, San Sebastian, España. | |
dc.relation | R. Prasad, C. Dovrolis, M. Murray, K. Claffy, Bandwidth estimation: metrics, measurement techniques, and tools, IEEE Network 17 (6) (2003) 27–35. [Consultado: 10 de mayo de 2010]. | |
dc.relation | Sanchez, “Algoritmos de agrupamiento”. No registra. [En línea]. Disponible: http://omarsanchez.net/Documents/Agrupamiento_kmeans.pdf [Consultado: 21 de abril de 2010]. | |
dc.relation | Seetharam Samptur. “Available bandwidth inference based on node-centric clusters”. Abril de 2009. [En línea]. Disponible: http://citeecer.ist.psu.edu [Consultado: 19 de abril de 2010]. | |
dc.relation | Shriram, Murray, Hyun, Brownlee, Broido, Fomenkov, kc claffy “Comparison of Public End-to-End BandwidthEstimation Tools on High-Speed Links. 2005. | |
dc.relation | SPSS, Inc. Headquarters, Chicago, Illinois. http://www.spss.com/es/ | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
dc.rights | Abierto (Texto Completo) | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.title | Implementación y evaluación de un algoritmo de clustering en un estimador de ancho de banda disponible | |