dc.contributorAcebedo Arenas, César Yovany
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000376671
dc.contributorhttps://orcid.org/0000-0002-5470-181X
dc.contributorhttps://www.researchgate.net/profile/Cesar_Yobany_Acevedo_Arenas
dc.creatorBecerra Guerrero, Juan Humberto
dc.date.accessioned2020-10-26T19:52:19Z
dc.date.available2020-10-26T19:52:19Z
dc.date.created2020-10-26T19:52:19Z
dc.date.issued2020
dc.identifierhttp://hdl.handle.net/20.500.12749/7346
dc.identifierinstname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifierreponame:Repositorio Institucional UNAB
dc.identifierrepourl:https://repository.unab.edu.co
dc.description.abstractDesde el establecimiento de Colombia como un estado independiente, se han librado guerras y se siguen librando para lograr la igualdad en un país lleno de contrastes, un país con historia pero sin memoria. La verdadera revolución comienza cuando aquellos que alimentan al país tienen la misma oportunidad que los que controlan las industrias, la Colombia rural es un lugar lleno de oportunidades que reconocemos pero que a la vez no hacemos nada para desarrollarlas. Una revolución tecnológica donde algo básico como dar a todas las familias en áreas rurales la oportunidad de cocinar sin necesidad de leña, cocinar sin importar si llueve y de igual manera tener un ambiente saludable dentro de su hogar sin los humos peligrosos generador por las cocinas a leña, esas son las revoluciones que realmente importa en el campo. El uso de lo que se ha considerado desperdicio durante siglos para producir biogás cambiar la forma en que se vive la vida en las zonas rurales de Colombia, esta revolución funcionar como una plataforma para una vida mejor y mas saludable. El principal objetivo de este trabajo es el desarrollo de biodigestores robustos y que pueden alimentarse del estiércol para producir biogás y fertilizantes como subproducto, que pueda satisfacer fácilmente las necesidades de un hogar, un biodigestor que se adapte a las necesidades sociales y económicas de las zonas rurales del país y a su entorno geográfico. Una investigación en profundidad de los avances tecnológicos actuales, acompañada del conocimiento de quienes han trabajado en los campos de Colombia.
dc.languagespa
dc.publisherUniversidad Autónoma de Bucaramanga UNAB
dc.publisherPregrado Ingeniería en Energía
dc.relation[1] M.-A. Sadi, “Design and Building of Biogas Digester for Organic Materials Gained From Solid waste By,” , p. 210, 2010.
dc.relation[2] G. U. Megwai, “Process Simulations of Small Scale Biomass Power Plant,” Universitu of Boras, no. 1, p. 44, 2014.
dc.relation[3] G. Coassin, “US 2020 0039858 A1.”
dc.relation[4] N. SK, “Biogas Production from Poultry Faeces,” Innovative Energy & Research, vol. 07, no. 04, 2018.
dc.relation[5] S. Carrara, “Small-scale biomass power generation,” p. 259, 2010.
dc.relation[6] E. D. Larson, “Small-Scale Gasification-Based Biomass Power Generation,” Biomass Workshop, no. January, pp. 1–26, 1998.
dc.relation[7] B. JEFFREYS, “WO 2018/102847 Al (51),” 2017.
dc.relation[8] Unidad de Planeaci´on Minero Energ´etica - UPME, Bolet´ın Estad´ıstico de Minas y Energ´ıa 1999-2005, 2006.
dc.relation[9] Upme, “Bolet´ın Estad´ıstico,” Entre Ciencia e Ingenier´ıa, vol. III, no. 97, p. 141, 2018. [Online]. Available: http://biblioteca.ucp.edu.co/OJS/index.php/paginas/article/ view/2570{%}5Cnhttp://unesdoc.unesco.org/images/0011/001163/116345s.pdf{%} 5Cnhttp://www.ucv.ve/fileadmin/user{ }upload/sadpro/Documentos/docencia{ } vol3{ }n2{ }2002/8{ }art.{ }5{ }fernando{ }Garcia.pdf{%}5Cnhttp://www
dc.relation[10] I. Final, E. Interdisciplinario, and C. Por, “Estimaci´on del potencial de conversi´on a biog´as de la biomasa en colombia y su aprovechamiento,” pp. 1–216, 2018.
dc.relation[11] B. G. Terminology, “Biogas from manure — Airclim,” pp. 1–21, 2012. [Online]. Available: http://www.airclim.org/acidnews/biogas-manure
dc.relation[12] F. M. BARRAGAN, “IMPLICACIONES AMBIENTALES DEL USO DE LE ´ NA˜ COMO COMBUSTIBLE DOMESTICO EN LA ZONA RURAL DE USME FABIOL,” ´ Ph.D. dissertation, 2011.
dc.relation[13] EPA, “Project Development Handbook,” Energy, 2008. [Online]. Available: http://www.epa.gov/lmop/publications-tools/handbook.html
dc.relation[14] U.S. Environmental Protection Agency, “Market Opportunities for Biogas Recovery Systems at U.S. Livestock Facilities,” no. November, p. 41, 2011. [Online]. Available: http://www.epa.gov/agstar/documents/biogas{ }recovery{ }systems{ }screenres.pdf
dc.relation[15] EPA, “Managing Manure with Biogas Recovery Systems - Improved Performance at Competitive Costs, The AgSTAR Program,” pp. 1–8, 2002.
dc.relation[16] L. Avery, S. Joanne, and V. Tumwesige, “Small-Scale Biogas Digester for Sustainable Energy Production in Sub-Saharan Africa,” no. May 2014, p. 587, 2019.
dc.relation[17] UPME, Integraci´on de las energ´ıas renovables no convencionales en Colombia, 2015. [Online]. Available: http://www1.upme.gov.co/sgic/{%}0Ahttp: //www1.upme.gov.co/sgic/{%}0Ahttp://www1.upme.gov.co/sgic/{%}0Ahttp: //www.upme.gov.co/Estudios/2015/Integracion{ }Energias{ }Renovables/ INTEGRACION{ }ENERGIAS{ }RENOVANLES{ }WEB.pdf
dc.relation[18] P. Conil, “EL BIOGAS Gas Natural Renovable para el desarrollo rural Potencial para ´ Colombia,” 1984.
dc.relation[19] E. Kocak-Enturk, K. Yetilmezsoy, and M. Ozturk, “A small-scale biogas digester model for hen manure treatment: Evaluation and suggestions,” Fresenius Environmental Bulletin, vol. 16, no. 7, pp. 804–811, 2007.
dc.relation[20] S. Elsasser, “Anaerobic digester use in dairy farms in the United States,” 2006.
dc.relation[21] G. De Biogas, A. P. De, E. De Ganado, A. Nivel, D. E. Finca, E. N. El, O. Ecuatoriano, H. Brito, P. Palmay, M. Mendoza, and C. Haro, “Environmental studies View project HAZARDOUS WASTE TREATMENT View project,” no. February 2017, 2016. [Online]. Available: https://www.researchgate.net/publication/313844990
dc.relation[22] B. Manuel Raul Pelaez-Samaniego a, M. W. S. B, Q. Z. C, D. , Tsai Garcia-Perez a, C. F. E, and BManuel Garcia-Perez, “Charcoal from anaerobically digested dairy fiber for removal of hydrogen sulfide within biogas,” p. 9, 2018.
dc.relation[23] L. Rodrigues and L. Barbosa, “Influencia Da temperatura No Desempenho De biodigestores Com Esterco Bovino,” Journal of Chemical Information and Modeling, vol. 53, no. 9, pp. 1689–1699, 2013.
dc.relation[24] K. Reitzel, W. W. Bennett, N. Berger, W. J. Brownlie, S. Bruun, M. L. Christensen, D. Cordell, K. Van Dijk, S. Egemose, H. Eigner, R. N. Glud, O. Gr¨onfors, L. Hermann, S. Houot, M. Hupfer, B. Jacobs, L. Korving, C. Kjærgaard, H. Liimatainen, M. C. Van Loosdrecht, K. A. Macintosh, J. Magid, F. Maia, J. Martin-Ortega, J. McGrath, R. Meulepas, M. Murry, T. S. Neset, G. Neumann, U. G. Nielsen, P. H. Nielsen, V. O’Flaherty, H. Qu, J. Santner, V. Seufert, B. Spears, L. C. Stringer, M. Stutter, P. H. Verburg, P. Wilfert, P. N. Williams, and G. S. Metson, “New training to meet the global phosphorus challenge,” Environmental Science and Technology, vol. 53, no. 15, pp. 8479–8481, 2019.
dc.relation[25] C. F. Matos, J. L. Paes, E. F. Pinheiro, and D. V. De Campos, “Biogas production from ´ dairy cattle manure, under organic and conventional production systems,” Engenharia Agricola, vol. 37, no. 6, pp. 1081–1090, 2017.
dc.relation[26] A. Jafari-Sejahrood, B. Najafi, S. Faizollahzadeh Ardabili, S. Shamshirband, A. Mosavi, and K. wing Chau, “Limiting factors for biogas production from cow manure: energo-environmental approach,” Engineering Applications of Computational Fluid Mechanics, vol. 13, no. 1, pp. 954–966, 2019. [Online]. Available: https://doi.org/10.1080/19942060.2019.1654411
dc.relation[27] Enersinc, “Energy Demand Situation in Colombia,” Departamento nacional de planeacion de Colomb´ıa, vol. 2ed, p. 136, 2017. [Online]. Available: https://www.dnp.gov.co/Crecimiento-Verde/Documents/ejes-tematicos/ Energia/MCV-EnergyDemandSituationVF.pdf
dc.relation[28] M. T. Yohaness, “Biogas Potential from Cow Manure – Influence of Diet,” p. 49, 2010.
dc.relation[29] A. Wresta, D. Andriani, A. Saepudin, and H. Sudibyo, “Economic analysis of cow manure biogas as energy source for electricity power generation in small scale ranch,” Energy Procedia, vol. 68, pp. 122–131, 2015. [Online]. Available: http://dx.doi.org/10.1016/j.egypro.2015.03.240
dc.relation[30] G. Alliance, C. Cookstoves, A. Global, and C. Limpias, “Colombia,” 2015.
dc.relation[31] M. Chavarria, “Estado Actual de la Informacion Sobre Madera para Energia,” Estado de la Informacion Forestal en Nicaragua, pp. 77–117, 2002.
dc.relation[32] H. Bergman, “Integrating a Biogas Digester into a Household Environment,” 2016.
dc.relation[33] I. Ferrer, M. Garf´ı, E. Uggetti, L. Ferrer-Mart´ı, A. Calderon, and E. Velo, “Biogas production in low-cost household digesters at the Peruvian Andes,” Biomass and Bioenergy, vol. 35, no. 5, pp. 1668–1674, 2011.
dc.relation[34] I. Ferrer, M. Gamiz, M. Almeida, and A. Ruiz, “Pilot project of biogas production from pig manure and urine mixture at ambient temperature in Ventanilla (Lima, Peru),” Waste Management, vol. 29, no. 1, pp. 168–173, 2009. [Online]. Available: http://dx.doi.org/10.1016/j.wasman.2008.02.014
dc.relation[35] T. Z. A. T and E. Gevaertdreef, “Designated Extension States : Designated Validation States :,” vol. 1, no. 19, pp. 1–10, 2019.
dc.relation[36] E. Chow, A. Torres, and W. Hirose, “US 2019 0344547 A1.”
dc.relation[37] N. Bruce, R. Perez-Padilla, and R. Albalak, “The health effects of indoor air pollution exposure in developing countries,” Geneva: World Health Organization, Report WHO/SDE/OEH/02.05, pp. 1–40, 2002
dc.relation[38] I. Angelidaki, M. Alves, D. Bolzonella, L. Borzacconi, J. L. Campos, A. J. Guwy, S. Kalyuzhnyi, P. Jenicek, and J. B. Van Lier, “Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays,” Water Science and Technology, vol. 59, no. 5, pp. 927–934, 2009.
dc.relation[39] D. L. Brooks, “Potential for Methane Digesters,” pp. 1–52, 2013.
dc.relation[40] P. W. Gerbens-Leenes, A. Y. Hoekstra, and T. van der Meer, “The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply,” Ecological Economics, vol. 68, no. 4, pp. 1052–1060, 2009. [Online]. Available: http://dx.doi.org/10.1016/j.ecolecon.2008.07.013
dc.relation[41] L. Axelsson, M. Franz´en, M. Ostwald, G. Berndes, G. Lakshmi, and N. H. Ravindranath, “Perspective: Jatropha cultivation in southern India: Assessing farmers’ experiences,” Biofuels, Bioproducts and Biorefining, vol. 6, no. 3, pp. 246–256, 2012.
dc.relation[42] T. Akio, “The Critical Assessment of the Resource-Based View of Strategic Management,” Ritsumeikan International Affairs, vol. 3, no. 2005, pp. 125–150, 2005. [Online]. Available: http://www.ritsumei.ac.jp/acd/re/k-rsc/ras/english/publications/ ria{ }en/03{ }8.pdf
dc.relation[43] P. Gadonneix, F. Barn´es De Castro, and R. Drouin, Water for Energy World Energy Council Officers of the World Energy Council, 2010. [Online]. Available: www.worldenergy.org’
dc.relation[44] A. Meneses-J´acome, R. Diaz-Chavez, H. I. Vel´asquez-Arredondo, D. L. C´ardenasCh´avez, R. Parra, and A. A. Ruiz-Colorado, “Sustainable Energy from agro-industrial wastewaters in Latin-America,” Renewable and Sustainable Energy Reviews, vol. 56, pp. 1249–1262, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2015.12.036
dc.relation[45] B. Holmatov, A. Y. Hoekstra, and M. S. Krol, “Land, water and carbon footprints of circular bioenergy production systems,” Renewable and Sustainable Energy Reviews, vol. 111, no. November 2018, pp. 224–235, 2019. [Online]. Available: https://doi.org/10.1016/j.rser.2019.04.085
dc.relation[46] D. Brumbaugh, “Regenis is Converting Manure into an Environmental Success Story,” 2018. [Online]. Available: https://businesspulse.com/ regenis-is-converting-manure-into-an-environmental-success-story/
dc.relation[47] J. D. Craig and C. R. Purvis, “A small scale biomass fueled gas turbine engine,” Proceedings of the ASME Turbo Expo, vol. 3, no. January 1999, pp. 64–67, 1998.
dc.relation[48] E. D. Aklaku, K. Jones, and K. Obiri-Danso, “Integrated Biological Treatment and Biogas Production in a Small-Scale Slaughterhouse in Rural Ghana,” Water Environment Research, vol. 78, no. 12, pp. 2335–2339, 2006.
dc.relation[49] A. House, “Global headquarters: alliance house, 12 caxton street, london sw1h 0qs, uk company limited by guarantee. registered in england no. 3597005. registered office as above. registered charity (england) no. 1076690,” vol. 44, no. 3597005, pp. 1–4, 2009.
dc.relation[50] W. F. Lazarus, “Farm-based anaerobic digesters as an energy and odor control technology: Background and policy issues,” Anaerobic Digestion for Energy Generation and Greenhouse Gas Reduction, no. 843, pp. 15–44, 2010.
dc.relation[51] A. Voinov and H. Cardwell, “The Energy-Water Nexus: Why Should We Care?” 2009.
dc.relation[52] J. Jensen, S. Bioenergy, A. F. Specialist, and N. Resources, “COMPLETING A SUCCESSFUL FEASIBILITY STUDY FOR AN ANAEROBIC DIGESTION Completing 34 a Successful Feasibility Study for an Anaerobic Digestion Project Why Complete a Feasibility What are the Different Types of,” pp. 1–10, 2018.
dc.relation[53] M. Carus and L. Dammer, “The Circular Bioeconomy - Concepts, Opportunities, and Limitations,” Industrial Biotechnology, vol. 14, no. 2, pp. 83–91, 2018.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleUso de residuos biológicos bovinos para aplicaciones rurales a pequeña escala en Colombia mediante un sistema de biogás de ciclo cerrado


Este ítem pertenece a la siguiente institución