dc.contributorBecerra Bayona, Silvia Milena
dc.contributorSolarte David, Víctor Alfonso
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001568861
dc.contributorhttps://scholar.google.es/citations?hl=es&user=5wr21EQAAAAJ
dc.contributorhttps://orcid.org/0000-0002-4499-5885
dc.contributorhttps://www.scopus.com/authid/detail.uri?authorId=36522328100
dc.contributorhttps://www.researchgate.net/profile/Silvia_Becerra-Bayona
dc.creatorGarcía Rivero, Diana Cristina
dc.creatorRodríguez Suárez, Jose Luis
dc.creatorVelandia Quintero, Yuri Tatiana
dc.date.accessioned2021-03-15T23:01:12Z
dc.date.accessioned2022-09-28T19:14:16Z
dc.date.available2021-03-15T23:01:12Z
dc.date.available2022-09-28T19:14:16Z
dc.date.created2021-03-15T23:01:12Z
dc.date.issued2020
dc.identifierhttp://hdl.handle.net/20.500.12749/12427
dc.identifierinstname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifierreponame:Repositorio Institucional UNAB
dc.identifierrepourl:https://repository.unab.edu.co
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3714979
dc.description.abstractEl shock séptico, es una de las principales complicaciones que presentan los pacientes que padecen sepsis. Este corresponde a las alteraciones metabólicas, celulares, y circulatorias que aumentan el riesgo de mortalidad y producen hipotensión tisular grave, caracterizada clínicamente por la vasodilatación excesiva. Como tratamiento de esta condición, se hace uso de vasopresores tales como la norepinefrina, la cual lleva al aumento de la presión arterial media (PAM), con el fin de mantener un flujo arterial óptimo. No obstante, esto puede llevar a complicaciones como la pérdida de la micro perfusión periférica, generando así la isquemia, que en la mayoría de los pacientes se refleja en la necrosis distal digital. En la actualidad, este tipo de complicación se trata con la resección quirúrgica del tejido afectado, siendo los dedos generalmente los amputados. Sin embargo, no se cuenta con alternativas profilácticas que eviten la aparición de isquemia distal digital, y es necesario desarrollar alternativas terapéuticas que permitan evitarla. Por consiguiente, se fabricaron perlas de alginato, estandarizando su velocidad de agitación y concentración, para posteriormente encapsular en ellas peróxido de calcio (CPO) y evaluar tanto sus propiedades mecánicas por medio de pruebas de compresión, como su liberación de oxígeno por medio del método de desplazamiento de fluido. Los resultados obtenidos de la elaboración de las perlas de alginato demuestran que liberan entre 800 μL y 1200 μL de oxígeno en un periodo sostenido de 5 días, y que el aumento de la concentración de alginato es directamente proporcional a su módulo de elasticidad (entre 100 kPa y 150 kPa), además, al encapsular CPO, sus propiedades mecánicas se ven alteradas, aumentando los valores hasta cinco veces.
dc.languagespa
dc.publisherUniversidad Autónoma de Bucaramanga UNAB
dc.publisherFacultad Ingeniería
dc.publisherPregrado Ingeniería Biomédica
dc.relationAbdi, S. I. H., Ng, S. M., & Lim, J. O. (2011). An enzyme-modulated oxygen-producing microsystem for regenerative therapeutics. International Journal of Pharmaceutics, 409(1), 203-205. doi:10.1016/j.ijpharm.2011.02.041
dc.relationAhmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2), 105-121. doi:10.1016/j.jare.2013.07.006
dc.relationAkhavan-Kharazian, N., & Izadi-Vasafi, H. (2019). Preparation and characterization of chitosan/gelatin/nanocrystalline cellulose/calcium peroxide films for potential wound dressing applications. International Journal of Biological Macromolecules, 133, 881-891. doi:10.1016/j.ijbiomac.2019.04.159
dc.relationAlemdar, N., Leijten, J., Camci-Unal, G., Hjortnaes, J., Ribas, J., Paul, A., . . . Khademhosseini, A. (2017). Oxygen-generating photo-cross-linkable hydrogels support cardiac progenitor cell survival by reducing hypoxia-induced necrosis. ACS Biomaterials Science & Engineering, 3(9), 1964-1971. doi:10.1021/acsbiomaterials.6b00109
dc.relationAlayash, A. I. (2019). Mechanisms of toxicity and modulation of hemoglobin-based oxygen carriers. Shock (Augusta, Ga.), 52(1S Suppl 1), 41-49. doi:10.1097/SHK.0000000000001044
dc.relationAmani, S., Shahrooz, R., Mortaz, E., Hobbenaghi, R., Mohammadi, R., & Baradar Khoshfetrat, A. (2019). Histomorphometric and immunohistochemical evaluation of angiogenesis in ischemia by tissue engineering in rats: Role of mast cells. Veterinary Research Forum : An International Quarterly Journal, 10(1), 23-30. doi:10.30466/vrf.2019.34311
dc.relationBairagi, A., Griffin, B., Tyack, Z., Vagenas, D., McPhail, S. M., & Kimble, R. (2019). Comparative effectiveness of biobrane®, RECELL® autologous skin cell suspension and silver dressings in partial thickness paediatric burns: BRACS randomised trial protocol. Burns & Trauma, 7, 33. doi:10.1186/s41038-019-0165-0
dc.relationBaiula, M., Greco, R., Ferrazzano, L., Caligiana, A., Hoxha, K., Bandini, D., . . . Tolomelli, A. (2020). Integrin-mediated adhesive properties of neutrophils are reduced by hyperbaric oxygen therapy in patients with chronic non-healing wound. PloS One, 15(8), e0237746. doi:10.1371/journal.pone.0237746
dc.relationBatra, J., & Srinivasan, S. (2019). Theranostics. New York, NY: Springer. doi:10.1007/978-1- 4939-9769-5 Retrieved from https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=592093
dc.relationBolaños Toro, O. F., Saldarriaga Rivera, L. M., Forero Gómez, J. E., & Alzate Piedrahita, J. A. (2018). Gangrena simétrica periférica asociada a norepinefrina en una paciente con urosepsis por escherichia coli. Revista Archivo Médico De Camagüey, 22(3), 341-348. Retrieved from http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1025- 02552018000300010&lng=es&nrm=iso&tlng=es
dc.relationBone, R. C., Balk, R. A., Cerra, F. B., Dellinger, R. P., Fein, A. M., Knaus, W. A., . . . Sibbald, W. J. (1992). Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. the ACCP/SCCM consensus conference committee. american college of chest physicians/society of critical care medicine. Chest, 101(6), 1644-1655. doi:10.1378/chest.101.6.1644
dc.relationBorden, R. C., Goin, R. T., & Kao, C. (1997). Control of BTEX migration using a biologically enhanced permeable barrier. Groundwater Monitoring & Remediation, 17(1), 70-80. doi:10.1111/j.1745-6592.1997.tb01186.x
dc.relationBUESO, A.', FURIÓ, C Y MANS, (1) IB V, & LH (2) S F P U V (3) Departament d9EnginyeriaQuímicai Metal-lúrgia. Universitat de Barcelona.Interpretación de las reacciones de oxidaci~n-reducci~pnor los estudiantes. primeros resultados
dc.relationCconislla Bello, J. L., Jacinto, C., Maza, I., Jahuira, M., Pando, A., Mayta, H., & Valderrama, A. (2016). Desarrollo de micropartículas de quitosano cuaternizado y entrecruzado para la adsorción de ácido desoxirribonucleico (ADN). Revista De La Sociedad Química Del Perú, 82(4), 467-479. Retrieved from http://www.scielo.org.pe/scielo.php?script=sci_abstract&pid=S1810- 634X2016000400008&lng=es&nrm=iso&tlng=es
dc.relationCamci-Unal, G., Alemdar, N., Annabi, N., & Khademhosseini, A. (2013). Oxygen releasing biomaterials for tissue engineering. Polymer International, 62(6), 843-848. doi:10.1002/pi.4502
dc.relationCassidy, D. P., & Irvine, R. L. (1999). Use of calcium peroxide to provide oxygen for contaminant biodegradation in a saturated soil. Journal of hazardous materials, 69(1), 25-39.
dc.relationChan, E., Lim, T., Voo, W., Pogaku, R., Tey, B. T., & Zhang, Z. (2011). Effect of formulation of alginate beads on their mechanical behavior and stiffness. Particuology, 9(3), 228-234. doi:10.1016/j.partic.2010.12.002
dc.relationChandra, P. K., Ross, C. L., Smith, L. C., Jeong, S. S., Kim, J., Yoo, J. J., & Harrison, B. S. (2015). Peroxide-based oxygen generating topical wound dressing for enhancing healing of dermal wounds. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 23(6), 830-841. doi:10.1111/wrr.12324
dc.relationCho, S. H., Lim, S. M., Han, D. K., Yuk, S. H., Im, G. I., & Lee, J. H. (2009). Time-dependent alginate/polyvinyl alcohol hydrogels as injectable cell carriers. Journal of Biomaterials Science. Polymer Edition, 20(7-8), 863-876. doi:10.1163/156856209X444312
dc.relationDaroca-Pérez, R., & Carrascosa, M. F. (2017). Digital necrosis: A potential risk of high-dose norepinephrine. Therapeutic Advances in Drug Safety, 8(8), 259-261. doi:10.1177/2042098617712669
dc.relationDiridollou, S., Vabre, V., Berson, M., Vaillant, L., Black, D., Lagarde, J. M., Grégoire, J. M., Gall, Y., & Patat, F. (2001). Skin ageing: Changes of physical properties of human skin in vivo. International Journal of Cosmetic Science, 23(6), 353–362. https://doi.org/10.1046/j.0412- 5463.2001.00105.x
dc.relationDharupaneedi, S. P., Nataraj, S. K., Nadagouda, M., Reddy, K. R., Shukla, S. S., & Aminabhavi, T. M. (2019). Membrane-based separation of potential emerging pollutants. Separation and Purification Technology, 210, 850-866. doi:10.1016/j.seppur.2018.09.003
dc.relationEsmaeili, J., Rezaei, F. S., Beram, F. M., & Barati, A. (2020). Integration of microbubbles with biomaterials in tissue engineering for pharmaceutical purposes. Heliyon, 6(6), e04189. https://doi.org/10.1016/j.heliyon.2020.e04189
dc.relationFan, Z., Xu, Z., Niu, H., Gao, N., Guan, Y., Li, C., . . . Guan, J. (2018). An injectable oxygen release system to augment cell survival and promote cardiac repair following myocardial infarction. Scientific Reports, 8(1), 1371-22. doi:10.1038/s41598-018-19906-w
dc.relationFathollahipour, S., Patil, P. S., & Leipzig, N. D. (2018). Oxygen regulation in development: Lessons from embryogenesis towards tissue engineering. Cells, Tissues, Organs, 205(5-6), 350- 371. doi:10.1159/000493162
dc.relationFischer, B. H. (1969). Topical hyperbaric oxygen treatment of pressure sores and skin ulcers. Lancet (London, England), 2(7617), 405-409. doi:10.1016/s0140-6736(69)90113-5
dc.relationGaikowski, M. P., Rach, J. J., & Ramsay, R. T. (1999). Acute toxicity of hydrogen peroxide treatments to selected lifestages of cold-, cool-, and warmwater fish. Aquaculture, 178(3), 191- 207. doi:10.1016/S0044-8486(99)00123-4
dc.relationGattás‐Asfura, K. M., Fraker, C. A., & Stabler, C. L. (2012). Perfluorinated alginate for cellular 62 encapsulation. Journal of Biomedical Materials Research. Part A, 100A(8), 1963-1971. doi:10.1002/jbm.a.34052
dc.relationGeneraal, J. D., Lansdorp, C. A., Boonstra, O., van Leeuwen, B. L., Vanhauten, H. A. M., Stevenson, M. G., & Been, L. B. (2020). Hyperbaric oxygen therapy for radiation-induced tissue injury following sarcoma treatment: A retrospective analysis of a dutch cohort. PloS One, 15(6), e0234419. doi:10.1371/journal.pone.0234419
dc.relationGoh, F., Gross, J. D., Simpson, N. E., & Sambanis, A. (2010). Limited beneficial effects of perfluorocarbon emulsions on encapsulated cells in culture: Experimental and modeling studies. Journal of Biotechnology, 150(2), 232-239. doi:10.1016/j.jbiotec.2010.08.013
dc.relationGoi, A., Viisimaa, M., Trapido, M., & Munter, R. (2011). Polychlorinated biphenyls-containing electrical insulating oil contaminated soil treatment with calcium and magnesium peroxides. Chemosphere (Oxford), 82(8), 1196-1201. doi:10.1016/j.chemosphere.2010.11.053
dc.relationGoi, A., Viisimaa, M., Trapido, M., & Munter, R. (2011). Polychlorinated biphenyls-containing electrical insulating oil contaminated soil treatment with calcium and magnesium peroxides. Chemosphere (Oxford), 82(8), 1196-1201. doi:10.1016/j.chemosphere.2010.11.053x
dc.relationGordillo, G. M., & Sen, C. K. (2009). Evidence-based recommendations for the use of topical oxygen therapy in the treatment of lower extremity wounds. The International Journal of Lower Extremity Wounds, 8(2), 105-111. doi:10.1177/1534734609335149
dc.relationGreenwood, D. (2010). Lois N. magner, A history of infectious diseases and the microbial world Oxford Academic. doi:10.1093/shm/hkq081 Retrieved from https://academic.oup.com/shm/article/23/3/700/1720925
dc.relationHadanny, A., Rittblat, M., Bitterman, M., May-Raz, I., Suzin, G., Boussi-Gross, R., . . . Efrati, S. 63 (2020). Hyperbaric oxygen therapy improves neurocognitive functions of post-stroke patients - a retrospective analysis. Restorative Neurology and Neuroscience, 38(1), 93-107. doi:10.3233/RNN-19095
dc.relationHarrison, B. S., Eberli, D., Lee, S. J., Atala, A., & Yoo, J. J. (2007). Oxygen producing biomaterials for tissue regeneration. Biomaterials, 28(31), 4628-4634. doi:10.1016/j.biomaterials.2007.07.003
dc.relationHeinrich, H., & , H. a. (1985) Lieber die berührung fester elastischer körper
dc.relationIgnacio, D. R., Pavot, A. P., Azer, R. N., & Wisotsky, L. (1985). Topical oxygen therapy treatment of extensive leg and foot ulcers. Journal of the American Podiatric Medical Association, 75(4), 196-199. doi:10.7547/87507315-75-4-196
dc.relationJansman, M. M. T., & Hosta-Rigau, L. (2018). Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers doi:https://doi.org/10.1016/j.cis.2018.08.006
dc.relationJohnson, D., & Cooper, J. (2019). Retinal artery and vein occlusions successfully treated with hyperbaric oxygen. Clinical Practice and Cases in Emergency Medicine, 3(4), 338-340. doi:10.5811/cpcem.2019.7.43017
dc.relationKalliainen, L. K., Gordillo, G. M., Schlanger, R., & Sen, C. K. (2003). Topical oxygen as an adjunct to wound healing: A clinical case series. Pathophysiology: The Official Journal of the International Society for Pathophysiology, 9(2), 81-87. doi:10.1016/s0928-4680(02)00079-2
dc.relationKang, J. I., Park, K. M., & Park, K. D. (2019). Oxygen-generating alginate hydrogels as a bioactive acellular matrix for facilitating wound healing. Journal of Industrial and Engineering Chemistry (Seoul, Korea), 69, 397-404. doi:10.1016/j.jiec.2018.09.048
dc.relationKashyap, N., Kumar, N., & Kumar, M. N. V. Ravi. (2005). Hydrogels for pharmaceutical and 64 biomedical applications. Critical Reviews in Therapeutic Drug Carrier Systems, 22(2), 107-149. doi:10.1615/critrevtherdrugcarriersyst.v22.i2.10
dc.relationKaygusuz, H., & Erim, F. B. (2013). Alginate/BSA/montmorillonite composites with enhanced protein entrapment and controlled release efficiency. Reactive and Functional Polymers, 73(11), 1420-1425. doi:10.1016/j.reactfunctpolym.2013.07.014
dc.relationKaygusuz, H., Uysal, M., Adımcılar, V., & Erim, F. B. (2015). Natural alginate biopolymer montmorillonite clay composites for vitamin B2 delivery: Journal of Bioactive and Compatible Polymers, doi:10.1177/0883911514557014
dc.relationKaygusuz, H., Evingür, G. A., Pekcan, Ö, von Klitzing, R., & Erim, F. B. (2016). Surfactant and metal ion effects on the mechanical properties of alginate hydrogels. International Journal of Biological Macromolecules, 92, 220-224. doi:10.1016/j.ijbiomac.2016.07.004
dc.relationKhan, F., Singh, K., & Friedman, M. T. (2020). Artificial blood: The history and current perspectives of blood substitutes. Discoveries (Craiova, Romania), 8(1), e104. doi:10.15190/d.2020.1
dc.relationKershen, R. T., Fefer, S. D., & Atala, A. (2000). Tissue-engineered therapies for the treatment of urinary incontinence and vesicoureteral reflux. World Journal of Urology, 18(1), 51-55. doi:10.1007/pl00007072
dc.relationKim, J. W., & Oh, M. M. (2013). Endoscopic treatment of vesicoureteral reflux in pediatric patients. Korean Journal of Pediatrics, 56(4), 145-150. doi:10.3345/kjp.2013.56.4.145
dc.relationKohlert, S., McLean, L., Scarvelis, D., & Thompson, C. (2019). A case report of severe nasal ischemia from cold agglutinin disease and a novel treatment protocol including HBOT. Journal of Otolaryngology-Head and Neck Surgery, 48(1), 52. doi:10.1186/s40463-019-0369-0
dc.relationKong, H., Lee, K. Y., & Mooney, D. J. (2002). Decoupling the dependence of 65 rheological/mechanical properties of hydrogels from solids concentration. Polymer, 43(23), 6239-6246. doi:10.1016/S0032-3861(02)00559-1
dc.relationLee, C., Le Thanh, T., Kim, E., Gong, J., Chang, Y., & Chang, Y. (2014). Fabrication of novel oxygen-releasing alginate beads as an efficient oxygen carrier for the enhancement of aerobic bioremediation of 1,4-dioxane contaminated groundwater. Bioresource Technology, 171, 59-65. doi:10.1016/j.biortech.2014.08.039
dc.relationLee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science, 37(1), 106-126. doi:10.1016/j.progpolymsci.2011.06.003
dc.relationLin, C., & Metters, A. T. (2006). Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews, 58(12-13), 1379-1408. doi:10.1016/j.addr.2006.09.004
dc.relationLiao, J., Meng-Jun Wu, Yan-Dong Mu, Li, P., & Go, J. (2018). Impact of hyperbaric oxygen on tissue healing around dental implants in beagles Retrieved from http://ezproxy.aure.unab.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true &db=edb&AN=133050006&lang=es&site=eds-live
dc.relationLeón, A. L., Hoyos, N. A., Barrera, L. I., De La Rosa, G., Dennis, R., Dueñas, C., . . . Jaimes, F. A. (2013). Clinical course of sepsis, severe sepsis, and septic shock in a cohort of infected patients from ten colombian hospitals. BMC Infectious Diseases, 13, 345. doi:10.1186/1471- 2334-13-345
dc.relationLu, Z., Jiang, X., Chen, M., Feng, L., & Kang, Y. J. (2019). An oxygen-releasing device to improve the survival of mesenchymal stem cells in tissue engineering. Biofabrication, 11(4), 045012. doi:10.1088/1758-5090/ab332a
dc.relationMa, C., Kuzma, M. L., Bai, X., & Yang, J. (2019). Biomaterial‐Based metabolic regulation in 66 regenerative engineering. Advanced Science, 6(19), 1900819-n/a. doi:10.1002/advs.201900819 Majno, G. (1991). The ancient riddle of sigma eta psi iota sigma (sepsis). The Journal of Infectious Diseases, 163(5), 937-945. doi:10.1093/infdis/163.5.937
dc.relationMittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., & Malik, A. B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxidants & Redox Signaling, 20(7), 1126-1167. doi:10.1089/ars.2012.5149
dc.relationMurphy, E. C., & Friedman, A. J. (2019). Hydrogen peroxide and cutaneous biology: Translational applications, benefits, and risks. Journal of the American Academy of Dermatology, 81(6), 1379- 1386. doi:10.1016/j.jaad.2019.05.030
dc.relationNataraj, M., Maiya, A. G., Karkada, G., Hande, M., Rodrigues, G. S., Shenoy, R., & Prasad, S. S. (2019). Application of topical oxygen therapy in healing dynamics of diabetic foot ulcers - A systematic review. The Review of Diabetic Studies, 15(1), 74-82. doi:10.1900/RDS.2019.15.74
dc.relationNeira-Sanchez, E. R., & Málaga, G. (2016). Sepsis-3 y las nuevas definiciones, ¿es tiempo de abandonar SIRS? Acta Médica Peruana, 33(3), 217-222. doi:10.35663/amp.2016.333.115
dc.relationNishiguchi, A., & Taguchi, T. (2020). Sustained-immunostimulatory nanocellulose scaffold to enhance vaccine efficacy. Journal of Biomedical Materials Research Part A, 108(5), 1159- 1170. doi:https://doi.org/10.1002/jbm.a.36890
dc.relationNorthup, A., & Cassidy, D. (2008). Calcium peroxide (CaO2) for use in modified fenton chemistry. Journal of Hazardous Materials, 152(3), 1164-1170. doi:10.1016/j.jhazmat.2007.07.096
dc.relationLam, G., Fontaine, R., Ross, F. L., & Chiu, E. S. (2017). Hyperbaric oxygen therapy: Exploring the clinical evidence. Advances in Skin & Wound Care, 30(4), 181-190.
dc.relationLee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science, 37(1), 106-126. doi:10.1016/j.progpolymsci.2011.06.003
dc.relationO'Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today (Kidlington, England), 14(3), 88-95. doi:10.1016/s1369-7021(11)70058-x
dc.relationOdencrantz, J. E., Johnson, J. G., & Koenigsberg, S. S. (1996). Enhanced intrinsic bioremediation of hydrocarbons using an oxygen‐releasing compound. Remediation (New York, N.Y.), 6(4), 99- 114. doi:10.1002/rem.3440060408
dc.relationRhee, C., Gohil, S., & Klompas, M. (2014). Regulatory mandates for sepsis care--reasons for caution. The New England Journal of Medicine, 370(18), 1673-1676. doi:10.1056/NEJMp1400276
dc.relationRhodes, A., Evans, L. E., Alhazzani, W., Levy, M. M., Antonelli, M., Ferrer, R., . . . Dellinger, R. P. (2017). Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Medicine, 43(3), 304-377. doi:10.1007/s00134-017-4683-6
dc.relationRinaudo, M. (1992). On the abnormal exponents aν and aD in mark houwink type equations for wormLike chain polysaccharides. Polymer Bulletin, 27(5), 585-589. doi:10.1007/BF00300608
dc.relationRoyal Society of Chemistry (Great Britain).RSC advances.
dc.relationRudrashish Haldar, Devendra Gupta, Shweta Chitranshi, Manish Kumar Singh, & Sumit Sachan. (2019). Artificial blood: A futuristic dimension of modern day transfusion sciences. Cardiovascular & Hematological Agents in Medicinal Chemistry, 17(1), 11-16. doi:10.2174/1871525717666190617120045
dc.relationSayadi, L. R., Banyard, D. A., Ziegler, M. E., Obagi, Z., Prussak, J., Klopfer, M. J., . . . Widgerow, A. D. (2018). Topical oxygen therapy & micro/nanobubbles: A new modality for tissue oxygen delivery. International Wound Journal, 15(3), 363-374. doi:10.1111/iwj.12873
dc.relationSculean, A., Windisch, P., Chiantella, G. C., Donos, N., Brecx, M., & Reich, E. (2001). Treatment of intrabony defects with enamel matrix proteins and guided tissue regeneration. A prospective controlled clinical study. Journal of Clinical Periodontology, 28(5), 397-403. doi:10.1034/j.1600-051x.2001.028005397.x
dc.relationSimons, M., Gretton, S., Silkstone, G. G. A., Rajagopal, B. S., Allen-Baume, V., Syrett, N., . . . Cooper, C. E. (2018). Comparison of the oxidative reactivity of recombinant fetal and adult human hemoglobin: Implications for the design of hemoglobin-based oxygen carriers. Bioscience Reports, 38(4) doi:10.1042/BSR20180370
dc.relationSteg, H., Buizer, A. T., Woudstra, W., Veldhuizen, A. G., Bulstra, S. K., Grijpma, D. W., & Kuijer, R. (2015). Control of oxygen release from peroxides using polymers. Journal of Materials Science : Materials in Medicine, 26(7), 1-4. doi:10.1007/s10856-015-5542-z
dc.relationPaprocki, J., Pawłowska, M., Sutkowy, P., Piechocki, J., & Woźniak, A. (2020). Evaluation of oxidative stress in patients with difficult-to-heal skin wounds treated with hyperbaric oxygen. Oxidative Medicine and Cellular Longevity, 2020, 1-8. doi:10.1155/2020/1835352
dc.relationPacheco Pacori, Y. D., & García Duque, O. (2018). Necrosis isquémica de todos los dedos y ortejos después del uso de norepinefrina en paciente ginecológico. Anales De La Facultad De Medicina, 79(2), 149. doi:10.15381/anales.v79i2.14942
dc.relationPerez-Vidal, C., Gracia, L., Carmona, C., Alorda, B., & Salinas, A. (2017). Wireless transmission of biosignals for hyperbaric chamber applications. PloS One, 12(3), e0172768. doi:10.1371/journal.pone.0172768
dc.relationSayadi, L. R., Banyard, D. A., Ziegler, M. E., Obagi, Z., Prussak, J., Klopfer, M. J., . . . Widgerow, A. D. (2018). Topical oxygen therapy & micro/nanobubbles: A new modality for tissue oxygen delivery. International Wound Journal, 15(3), 363-374. doi:10.1111/iwj.12873
dc.relationSchäfer, M., & Werner, S. (2011). The cornified envelope: A first line of defense against reactive oxygen species. Journal of Investigative Dermatology, 131(7), 1409-1411. doi:10.1038/jid.2011.119
dc.relationSeyedmahmoud, R., Çelebi-Saltik, B., Barros, N., Nasiri, R., Banton, E., ShamLoo, A., . . . Ahadian, S. (2019). Three-dimensional bioprinting of functional skeletal muscle tissue using gelatin methacryloyl-alginate bioinks. Micromachines, 10(10), 679. doi:10.3390/mi10100679
dc.relationSinger, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M., . . . Angus, D. C. (2016). The third international consensus definitions for sepsis and septic shock (sepsis-3). Jama, 315(8), 801-810. doi:10.1001/jama.2016.0287
dc.relationSoon-Shiong, P., Heintz, R. E., Merideth, N., Yao, Q. X., Yao, Z., Zheng, T. I. A. N. L. I., ... & Harris, M. (1994). Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet (London, England), 343(8903), 950.
dc.relationTønnesen, H. H., & Karlsen, J. (2002). Alginate in drug delivery systems. Drug Development and Industrial Pharmacy, 28(6), 621-630. doi:10.1081/DDC-120003853
dc.relationValenzuela Sánchez, F., Bohollo de Austria, R., Monge García, I., & Gil Cano, A. (2005). Shock séptico. Medicina Intensiva, 29(3), 192-200. doi:10.1016/S0210-5691(05)74227-3
dc.relationVesper, S. J., Murdoch, L. C., Hayes, S., & Davis-Hoover, W. J. (1994). Solid oxygen source for bioremediation in subsurface soils. Journal of Hazardous Materials, 36(3), 265-274. doi:10.1016/0304-3894(94)85019-4
dc.relationVinkel, J., Holm, N. F. R., Jakobsen, J. C., & Hyldegaard, O. (2020). Effects of adding adjunctive 70 hyperbaric oxygen therapy to standard wound care for diabetic foot ulcers: A protocol for a systematic review with meta-analysis and trial sequential analysis. BMJ Open, 10(6), e031708. doi:10.1136/bmjopen-2019-031708
dc.relationWang, C. X., Cowen, C., Zhang, Z., & Thomas, C. R. (2005). High-speed compression of single alginate microspheres. Chemical Engineering Science, 60(23), 6649-6657. doi:10.1016/j.ces.2005.05.052
dc.relationWang, M., & Tang, T. (2018). Surface treatment strategies to combat implant-related infection from the beginning. Journal of Orthopaedic Translation, 17, 42-54. doi:10.1016/j.jot.2018.09.001
dc.relationWard, C. L., Corona, B. T., Yoo, J. J., Harrison, B. S., & Christ, G. J. (2013). Oxygen generating biomaterials preserve skeletal muscle homeostasis under hypoxic and ischemic conditions. PloS One, 8(8), e72485. doi:10.1371/journal.pone.0072485
dc.relationWee, n., & Gombotz, n. (1998). Protein release from alginate matrices. Advanced Drug Delivery Reviews, 31(3), 267-285. doi:10.1016/s0169-409x(97)00124-5
dc.relationWhite, D. M., Irvine, R. L., & Woolard, C. R. (1998). The use of solid peroxides to stimulate growth of aerobic microbes in tundra. Journal of Hazardous Materials, 57(1), 71-78. doi:10.1016/S0304-3894(97)00065-4
dc.relationWolanov, Y., Prikhodchenko, P. V., Medvedev, A. G., Pedahzur, R., & Lev, O. (2013). Zinc dioxide nanoparticulates: A hydrogen peroxide source at moderate pH. Environmental Science & Technology, 47(15), 8769-8774. doi:10.1021/es4020629
dc.relationWHO (World Health Organization). (2018). Sepsis . Retrieved from https://www.who.int/newsroom/ fact-sheets/detail/sepsis
dc.relationYamamoto, N., Oyaizu, T., Enomoto, M., Horie, M., Yuasa, M., Okawa, A., & Yagishita, K. 71 (2020). VEGF and bFGF induction by nitric oxide is associated with hyperbaric oxygen-induced angiogenesis and muscle regeneration Retrieved from http://ezproxy.aure.unab.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct= true&db=edb&AN=141771922&lang=es&site=eds-live
dc.relationYang, Y., Di Pasqua, A. J., He, W., Tsai, T., Sueda, K., Zhang, Y., & Jay, M. (2013). Preparation of alginate beads containing a prodrug of diethylenetriaminepentaacetic acid. Carbohydrate Polymers, 92(2), 1915-1920. doi:10.1016/j.carbpol.2012.11.071
dc.relationZhang, N., Wei, M., & Ma, Q. (2019). Nanomedicines: A potential treatment for blood disorder diseases. Frontiers in Bioengineering and Biotechnology, 7, 369. doi:10.3389/fbioe.2019.0036
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleDesarrollo de un biomaterial a partir de peróxido de calcio encapsuladas en alginato como alternativa de prevención para la isquemia distal digital generada por vasopresores


Este ítem pertenece a la siguiente institución