dc.contributor | Tello Hernández, Alejandro | |
dc.contributor | Galvis Ramírez, Virgilio | |
dc.contributor | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001009125 | |
dc.contributor | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000552453 | |
dc.contributor | https://scholar.google.es/citations?hl=es#user=puxZHKYAAAAJ | |
dc.contributor | https://scholar.google.es/citations?hl=es&user=CZOaBDoAAAAJ | |
dc.contributor | https://www.scopus.com/authid/detail.uri?authorId=6603664598 | |
dc.contributor | https://www.scopus.com/authid/detail.uri?authorId=55963715000 | |
dc.contributor | https://www.researchgate.net/profile/Virgilio_Galvis | |
dc.creator | Prada Rocha, Angélica María | |
dc.date.accessioned | 2020-06-26T20:01:41Z | |
dc.date.accessioned | 2022-09-28T19:14:07Z | |
dc.date.available | 2020-06-26T20:01:41Z | |
dc.date.available | 2022-09-28T19:14:07Z | |
dc.date.created | 2020-06-26T20:01:41Z | |
dc.date.issued | 2017 | |
dc.identifier | http://hdl.handle.net/20.500.12749/1784 | |
dc.identifier | instname:Universidad Autónoma de Bucaramanga - UNAB | |
dc.identifier | reponame:Repositorio Institucional UNAB | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3714929 | |
dc.description.abstract | Objetivos: En este estudio se pretendió identificar los factores asociados a pérdida de células endoteliales durante la extracción extracapsular de catarata por facoemulsificación.
Materiales y métodos: Se realizó un estudio observacional, longitudinal, retrospectivo de las historias clínicas de pacientes sometidos a cirugía de catarata por facoemulsificación microincisional coaxial por un único cirujano (VGR) durante los meses de Enero 2016 a Junio 2016.
Resultados: Se encontró una pérdida endotelial promedio de 6.4 +/- 10%. Como factores asociados a pérdida de células endoteliales se encontraron la clasificación más avanzada de la catarata (LOCS III), el tiempo total de ultrasonido y la energía acumulada disipada (CDE por su nombre en inglés cumulative dissipated energy).
Conclusión: Es preferible realizar la facoemulsificación cuando la catarata no haya alcanzado los grados más avanzados (más allá de NC2 en la clasificación LOCS III), sobretodo en pacientes con endotelios alterados que por ende tienen mayor riesgo de descompensación corneal. Adicionalmente es preferible realizar técnicas quirúrgicas para la fragmentación del núcleo en las cuales se emplee menos CDE y tiempo total de ultrasonido. | |
dc.language | spa | |
dc.publisher | Universidad Autónoma de Bucaramanga UNAB | |
dc.publisher | Facultad Ciencias de la Salud | |
dc.publisher | Especialización en Oftalmología | |
dc.relation | Prada Rocha, Angélica María (2017). Determinación de los factores asociados a la pérdida de células endoteliales en cirugía de facoemulsificación de catarata microincisional coaxial en la Fundación Oftalmológica de Santander. Bucaramanga (Santander, Colombia) : Universidad Autónoma de Bucaramanga UNAB | |
dc.relation | 1. Pascolini, D., & Mariotti, S. P. (2012). Global estimates of visual impairment: 2010. The British Journal of Ophthalmology, 96(5), 614–8. https://doi.org/10.1136/bjophthalmol-2011-300539 | |
dc.relation | 2. Chylack, L. T. (1993). The Lens Opacities Classification System III. Archives of Ophthalmology, 111(6), 831. https://doi.org/10.1001/archopht.1993.01090060119035 | |
dc.relation | 3. Campbell, C. (1999). Observations on the optical effects of a cataract. Journal of Cataract and Refractive Surgery, 25(7), 995–1003. https://doi.org/10.1016/S0886-3350(99)00084-X | |
dc.relation | 4. Spalton, D., & Koch, D. (2000). The constant evolution of cataract surgery. BMJ, 321(7272), 1304–1304. https://doi.org/10.1136/bmj.321.7272.1304. | |
dc.relation | 5. Minassian, D. C., Rosen, P., Dart, J. K., Reidy, A., Desai, P., Sidhu, M., … Wingate, N. (2001). Extracapsular cataract extraction compared with small incision surgery by phacoemulsification: a randomised trial. The British Journal of Ophthalmology, 85(7), 822–9. https://doi.org/10.1136/bjo.85.7.822 | |
dc.relation | 6. Al Mahmood, A. M., Al-Swailem, S. A., & Behrens, A. Clear corneal incision in cataract surgery. Middle East African Journal of Ophthalmology, 21(1), 25–31. https://doi.org/10.4103/0974-9233.124084 | |
dc.relation | 7. Steinert, R. F. (2010) p 704. Cataract surgery. Saunders. | |
dc.relation | 8. Cheng, J.-W., Wei, R.-L., Cai, J.-P., Xi, G.-L., Zhu, H., Li, Y., & Ma, X.-Y. (2007). Efficacy of different intraocular lens materials and optic edge designs in preventing posterior capsular opacification: a meta-analysis. American Journal of Ophthalmology, 143(3), 428–436. https://doi.org/10.1016/j.ajo.2006.11.045 | |
dc.relation | 9. Zamvar, U., & Dhillon, B. (2005). Postoperative IOP prophylaxis practice following uncomplicated cataract surgery: a UK-wide consultant survey. BMC Ophthalmology, 5, 24. https://doi.org/10.1186/1471-2415-5-24 | |
dc.relation | 10. Mamalis, N., Edelhauser, H. F., Dawson, D. G., Chew, J., LeBoyer, R. M., & Werner, L. (2006, February). Toxic anterior segment syndrome. Journal of Cataract and Refractive Surgery. https://doi.org/10.1016/j.jcrs.2006.01.065 | |
dc.relation | 11. Berrocal, A. M., & Davis, J. L. (2002, September). Uveitis following intraocular surgery. Ophthalmology Clinics of North America. https://doi.org/10.1016/S0896-1549(02)00032-92-9 | |
dc.relation | 12. Pueringer, S. L., Hodge, D. O., & Erie, J. C. (2011). RISK OF LATE INTRAOCULAR LENS DISLOCATION AFTER CATARACT SURGERY, 1980–2009: A Population-Based Study. American Journal of Ophthalmology, 152(4), 618–623. http://doi.org/10.1016/j.ajo.2011.03.009 | |
dc.relation | 13. Yavas, G. F., Ozturk, F., & Kusbeci, T. (2007). Preoperative topical indomethacin to prevent pseudophakic cystoid macular edema. Journal of Cataract and Refractive Surgery, 33(5), 804–807. https://doi.org/10.1016/j.jcrs.2007.01.033 | |
dc.relation | 14. Yi, D. H., & Dana, M. R. (2002). Corneal edema after cataract surgery: incidence and etiology. Seminars in Ophthalmology, 17(3–4), 110–114. https://doi.org/10.1076/soph.17.3.110.14783 | |
dc.relation | 15. Ripandelli, G., Coppé, A. M., Parisi, V., Olzi, D., Scassa, C., Chiaravalloti, A., & Stirpe, M. (2007). Posterior Vitreous Detachment and Retinal Detachment after Cataract Surgery. Ophthalmology, 114(4), 692–697. https://doi.org/10.1016/j.ophtha.2006.08.045 | |
dc.relation | 16. Barry, P., Seal, D. V, Gettinby, G., Lees, F., Peterson, M., & Revie, C. W. (2006). ESCRS study of prophylaxis of postoperative endophthalmitis after cataract surgery. Preliminary report of principal results from a European multicenter study. Journal of Cataract and Refractive Surgery, 32(3), 407–410. https://doi.org/10.1016/j.jcrs.2006.02.021 | |
dc.relation | 17. Borasio, E., Mehta, J. S., & Maurino, V. (2006). Surgically induced astigmatism after phacoemulsification in eyes with mild to moderate corneal astigmatism. Temporal versus on-axis clear corneal incisions. Journal of Cataract and Refractive Surgery, 32(4), 565–572. https://doi.org/10.1016/j.jcrs.2005.12.104 | |
dc.relation | 18. Viestenz, A., Seitz, B., & Langenbucher, A. (2005). Evaluating the eye’s rotational stability during standard photography: Effect on determining the axial orientation of toric intraocular lenses. Journal of Cataract and Refractive Surgery, 31(3), 557–561. https://doi.org/10.1016/j.jcrs.2004.07.019 | |
dc.relation | 19. Krachmer, J. H., Mannis, M. J., & Holland, E. J. (2011). Cornea. Mosby/Elsevier. | |
dc.relation | 20. Waring, G. O., Bourne, W. M., Edelhauser, H. F., & Kenyon, K. R. (1982). The Corneal Endothelium. Ophthalmology, 89(6), 531–590. https://doi.org/10.1016/S0161-6420(82)34746-6 | |
dc.relation | 21. Bourne, W. M. (2003). Biology of the corneal endothelium in health and disease. Eye (London, England), 17(8), 912–8. https://doi.org/10.1038/sj.eye.6700559 | |
dc.relation | 22. Wörner, C. H., Olguín, A., Ruíz-García, J. L., & Garzón-Jiménez, N. (2011). Cell Pattern in Adult Human Corneal Endothelium. PLoS ONE, 6(5), e19483. http://doi.org/10.1371/journal.pone.0019483 | |
dc.relation | 23. Yee, R. W., Matsuda, M., Schultz, R. O., & Edelhauser, H. F. (1985). Changes in the normal corneal endothelial cellular pattern as a function of age. Current Eye Research, 4(6), 671–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4028790 | |
dc.relation | 24. Cavanagh, H. D., El-Agha, M. S., Petroll, W. M., & Jester, J. V. (2000). Specular microscopy, confocal microscopy, and ultrasound biomicroscopy: diagnostic tools of the past quarter century. Cornea, 19(5), 712–722. | |
dc.relation | 25. Matsuda, M., Suda, T., & Manabe, R. (1984). Serial alterations in endothelial cell shape and pattern after intraocular surgery. American Journal of Ophthalmology, 98(3), 313–319. | |
dc.relation | 26. Yang, R., Sha, X., Zeng, M., Tan, Y., Zheng, Y., & Fan, F. (2011). The influence of phacoemulsification on corneal endothelial cells at varying blood glucose levels. Eye Science, 26(2), 91–5. https://doi.org/10.3969/j.issn.1000-4432.2011.02.018 | |
dc.relation | 27. Hugod, M., Storr-Paulsen, A., Norregaard, J. C., Nicolini, J., Larsen, A. B., & Thulesen, J. (2011). Corneal endothelial cell changes associated with cataract surgery in patients with type 2 diabetes mellitus. Cornea, 30(7), 749–753. https://doi.org/10.1097/ICO.0b013e31820142d9 | |
dc.relation | 28. Yamazoe, K., Yamaguchi, T., Hotta, K., Satake, Y., Konomi, K., Den, S., & Shimazaki, J. (2011). Outcomes of cataract surgery in eyes with a low corneal endothelial cell density. Journal of Cataract and Refractive Surgery, 37(12), 2130–2136. https://doi.org/10.1016/j.jcrs.2011.05.039 | |
dc.relation | 29. Mahdy, M. A. E. S., Eid, M. Z., Mohammed, M. A.-B., Hafez, A., & Bhatia, J. (2012). Relationship between endothelial cell loss and microcoaxial phacoemulsification parameters in noncomplicated cataract surgery. Clinical Ophthalmology (Auckland, N.Z.). https://doi.org/10.2147/OPTH.S29865 | |
dc.relation | 30. Mathys, K. C., Cohen, K. L., & Armstrong, B. D. (2007). Determining factors for corneal endothelial cell loss by using bimanual microincision phacoemulsification and power modulation. Cornea, 26(9), 1049–1055. https://doi.org/10.1097/ICO.0b013e31813349b3 | |
dc.relation | 31. Vasavada, V., Vasavada, A. R., Vasavada, V. A., Srivastava, S., Gajjar, D. U., & Mehta, S. (2013). Incision integrity and postoperative outcomes after microcoaxial phacoemulsification performed using 2 incision-dependent systems. Journal of Cataract and Refractive Surgery, 39(4), 563–571. https://doi.org/10.1016/j.jcrs.2012.11.018 | |
dc.relation | 32. Mencucci, R., Ponchietti, C., Virgili, G., Giansanti, F., & Menchini, U. (2006). Corneal endothelial damage after cataract surgery: Microincision versus standard technique. Journal of Cataract and Refractive Surgery, 32(8), 1351–1354. https://doi.org/10.1016/j.jcrs.2006.02.070 | |
dc.relation | 33. Storr-Paulsen, A., Norregaard, J. C., Ahmed, S., Storr-Paulsen, T., & Pedersen, T. H. (2008). Endothelial cell damage after cataract surgery: Divide-and-conquer versus phaco-chop technique. Journal of Cataract and Refractive Surgery, 34(6), 996–1000. https://doi.org/10.1016/j.jcrs.2008.02.013 | |
dc.relation | 34. Zetterström, C., & Laurell, C. G. (1995). Comparison of endothelial cell loss and phacoemulsification energy during endocapsular phacoemulsification surgery. Journal of Cataract and Refractive Surgery, 21(1), 55–8. https://doi.org/10.1016/S0886-3350(13)80480-4 | |
dc.relation | 35. Hayashi, K., Hayashi, H., Nakao, F., & Hayashi, F. (1996). Risk factors for corneal endothelial injury during phacoemulsification. Journal of Cataract and Refractive Surgery, 22(8), 1079–84. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8915805 | |
dc.relation | 36. Park, J., Yum, H. R., Kim, M. S., Harrison, A. R., & Kim, E. C. (2013). Comparison of phaco-chop, divide-and-conquer, and stop-and-chop phaco techniques in microincision coaxial cataract surgery. Journal of Cataract and Refractive Surgery, 39(10), 1463–1469. https://doi.org/10.1016/j.jcrs.2013.04.033 | |
dc.relation | 37. Ho, J. W., & Afshari, N. A. (2015). Advances in cataract surgery: preserving the corneal endothelium. Current Opinion in Ophthalmology, 26(1), 22–27. https://doi.org/10.1097/ICU.0000000000000121 | |
dc.relation | 38. Rekas, M., Montés-Micó, R., Krix-Jachym, K., Kluś, A., Stankiewicz, A., & Ferrer-Blasco, T. (2009). Comparison of torsional and longitudinal modes using phacoemulsification parameters. Journal of Cataract and Refractive Surgery, 35(10), 1719–1724. https://doi.org/10.1016/j.jcrs.2009.04.047 | |
dc.relation | 39. Gonen, T., Sever, O., Horozoglu, F., Yasar, M., & Keskinbora, K. H. (2012, November). Endothelial cell loss: Biaxial small-incision torsional phacoemulsification versus biaxial small-incision longitudinal phacoemulsification. Journal of Cataract and Refractive Surgery, pp. 1918–24. https://doi.org/10.1016/j.jcrs.2012.06.051 | |
dc.relation | 40. Arshinoff, S. A., & Wong, E. (2003). Understanding, retaining, and removing dispersive and pseudodispersive ophthalmic viscosurgical devices. Journal of Cataract and Refractive Surgery, 29(12), 2318–2323. https://doi.org/10.1016/j.jcrs.2003.09.045 | |
dc.relation | 41. Bissen-Miyajima, H. (2008). Ophthalmic viscosurgical devices. Current Opinion in Ophthalmology, 19(1), 50–54. https://doi.org/10.1097/ICU.0b013e3282f14db0 | |
dc.relation | 42. Bissen-Miyajima, H. (2008). Ophthalmic viscosurgical devices. Current Opinion in Ophthalmology, 19(1), 50–54. https://doi.org/10.1097/ICU.0b013e3282f14db0 | |
dc.relation | 43. Arshinoff, S. A., & Norman, R. (2013). Tri-soft shell technique. Journal of Cataract and Refractive Surgery, 39(8), 1196–1203. https://doi.org/10.1016/j.jcrs.2013.06.011 | |
dc.relation | 44. Rosado-Adames, N., & Afshari, N. A. (2012). The changing fate of the corneal endothelium in cataract surgery. Current Opinion in Ophthalmology, 23(1), 3–6. https://doi.org/10.1097/ICU.0b013e32834e4b5f | |
dc.relation | 45. Van den Bruel, A., Gailly, J., Devriese, S., Welton, N. J., Shortt, A. J., & Vrijens, F. (2011). The protective effect of ophthalmic viscoelastic devices on endothelial cell loss during cataract surgery: a meta-analysis using mixed treatment comparisons. The British Journal of Ophthalmology, 95(1), 5–10. https://doi.org/10.1136/bjo.2009.158360 | |
dc.relation | 46. Reuschel, A., Bogatsch, H., Barth, T., & Wiedemann, R. (2010). Comparison of endothelial changes and power settings between torsional and longitudinal phacoemulsification. Journal of Cataract and Refractive Surgery, 36(11), 1855–1861. https://doi.org/10.1016/j.jcrs.2010.06.060 | |
dc.relation | 47. Faramarzi, A., Javadi, M. A., Karimian, F., Jafarinasab, M. R., Baradaran-Rafii, A., Jafari, F., & Yaseri, M. (2011). Corneal endothelial cell loss during phacoemulsification: Bevel-up versus bevel-down phaco tip. Journal of Cataract and Refractive Surgery, 37(11), 1971–1976. https://doi.org/10.1016/j.jcrs.2011.05.034 | |
dc.relation | 48. Hwang, H. Bin, Lyu, B., Yim, H. Bin, & Lee, N. Y. (2015). Endothelial Cell Loss after Phacoemulsification according to Different Anterior Chamber Depths. Journal of Ophthalmology, 2015, 210716. https://doi.org/10.1155/2015/210716 | |
dc.relation | 49. Reuschel, A., Bogatsch, H., Oertel, N., & Wiedemann, R. (2015). Influence of anterior chamber depth, anterior chamber volume, axial length, and lens density on postoperative endothelial cell loss. Graefe’s Archive for Clinical and Experimental Ophthalmology, 253(5), 745–752. https://doi.org/10.1007/s00417-015-2934-1 | |
dc.relation | 50. Galvis V, Tello A, Delgado J, Gutierrez, A, Rodriguez L. Reproducibilidad de resultados del análisis endotelial del microscopio especular de contacto TOPCON sp-3000. Revista de la Sociedad Colombiana de Oftalmologia, 44(3),191-290. | |
dc.relation | 51. Fakhry, M. A., & El Shazly, M. I. (2011). Torsional ultrasound mode versus combined torsional and conventional ultrasound mode phacoemulsification for eyes with hard cataract. Clinical Ophthalmology (Auckland, N.Z.), 5, 973–978. https://doi.org/10.2147/OPTH.S22879 | |
dc.relation | 52. Hwang, H. Bin, Lyu, B., Yim, H. Bin, & Lee, N. Y. (2015). Endothelial Cell Loss after Phacoemulsification according to Different Anterior Chamber Depths. Journal of Ophthalmology, 2015, 210716. https://doi.org/10.1155/2015/210716 | |
dc.relation | 53. Reuschel, A., Bogatsch, H., Oertel, N., & Wiedemann, R. (2015). Influence of anterior chamber depth, anterior chamber volume, axial length, and lens density on postoperative endothelial cell loss. Graefe’s Archive for Clinical and Experimental , 253(5), 745–752. https://doi.org/10.1007/s00417-015-2934-1 | |
dc.relation | 54. Lucena, D. R., Ribeiro, M. S. A., Messias, A., Bicas, H. E. A., Scott, I. U., & Jorge, R. (2011). Comparison of corneal changes after phacoemulsification using BSS Plus versus Lactated Ringer’s irrigating solution: a prospective randomised trial. The British Journal of Ophthalmology, 95(4), 485–489. https://doi.org/10.1136/bjo.2009.172502 | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
dc.rights | Abierto (Texto Completo) | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.title | Determinación de los factores asociados a la pérdida de células endoteliales en cirugía de facoemulsificación de catarata microincisional coaxial en la Fundación Oftalmológica de Santander | |