dc.contributor | Arango Rodríguez, Martha Ligia | |
dc.contributor | Wandurraga Sánchez, Edwin Antonio | |
dc.contributor | Ochoa Vera, Miguel Enrique | |
dc.contributor | Wandurraga Sánchez, Edwin Antonio [0001475567] | |
dc.contributor | Ochoa Vera, Miguel Enrique [0000898465] | |
dc.contributor | Ochoa Vera, Miguel Enrique [0000-0002-4552-3388] | |
dc.contributor | Wandurraga Sánchez, Edwin Antonio [Edwin-Antonio-Wandurraga-Sanchez-2168480303] | |
dc.contributor | Ochoa Vera, Miguel Enrique [Miguel-Enrique-Ochoa-2186675588] | |
dc.creator | Celis Acevedo, Emmanuel José | |
dc.date.accessioned | 2021-08-19T22:45:56Z | |
dc.date.accessioned | 2022-09-28T19:13:46Z | |
dc.date.available | 2021-08-19T22:45:56Z | |
dc.date.available | 2022-09-28T19:13:46Z | |
dc.date.created | 2021-08-19T22:45:56Z | |
dc.date.issued | 2021 | |
dc.identifier | http://hdl.handle.net/20.500.12749/13931 | |
dc.identifier | instname:Universidad Autónoma de Bucaramanga - UNAB | |
dc.identifier | reponame:Repositorio Institucional UNAB | |
dc.identifier | repourl:https://repository.unab.edu.co | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3714813 | |
dc.description.abstract | Introducción y objetivo: La úlcera de pie diabético (UPD), es una complicación frecuente con alta carga de morbi-mortalidad en pacientes con Diabetes Mellitus (DM). La medicina regenerativa aparece como estrategia efectiva y segura en el tratamiento de la UPD. Nuestro objetivo fue evaluar el efecto terapéutico de los derivados acelulares de células madre mesenquimales (dac-MSCs), en UPD tipo 1 y tipo 2.
Materiales y métodos: Se realizó un análisis secundario de los datos obtenidos del ensayo clínico realizado en Foscal Internacional. El Análisis de datos para cinética y velocidad de la UPD se hizo realizando una comparación entro los grupos experimentales mediante la prueba de ANOVA y mediante un post-test de comparación múltiple de Bonferroni. Se calculó además la función de sobrevida de la úlcera hasta su cierre al 50% y 100% mediante el método de Kaplan-Meier. Finalmente se realizó un análisis de cociente de riesgo (HR, por sus siglas en ingles) al cierre de la úlcera al 50% y al 100%.
Resultados: El 60.7% de los participantes fueron hombres, la media de edad fue de 61.5 ± 7.8 años y al inicio del tratamiento el 75% los participantes presentaron una HbA1c fuera de metas (HbA1c > 7%). Tanto los pacientes con UPD tipo 1 como tipo 2, lograron un velocidad y cinética de cierra mayor en comparación con el grupo de terapia convencional. El análisis de sobrevida de la úlcera hasta el cierre al 50 y 100% de la UPD mostró mayor eficacia tanto en el grupo de dac-MSCs y células madre mesenquimales de medula ósea (BM-MSCs) en comparación con el grupo convencional. El cociente de riesgo (HR, por sus siglas en ingles), de cierre de las UPD al 50 y 100%, fue significamente mayor en pacientes tratados con dac-MSCs y BM-MSCs en comparación con el grupo de tratamiento convencional.
Conclusiones: La medicina regenerativa (BM-MSCs y dac-MSCS), surge como una estrategia terapéutica efectiva y segura para el tratamiento de pacientes con UPD. | |
dc.language | spa | |
dc.publisher | Universidad Autónoma de Bucaramanga UNAB | |
dc.publisher | Facultad Ciencias de la Salud | |
dc.publisher | Especialización en Medicina Interna | |
dc.relation | 1. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019. | |
dc.relation | 2. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98 | |
dc.relation | 3. A M. Diabetic Foot in Colombia. In: Dardik A (eds) Vascular Surgery Springer, Cham. 2017. | |
dc.relation | 4. Snyder RJ, Hanft JR. Diabetic foot ulcers--effects on QOL, costs, and mortality and the role of standard wound care and advanced-care therapies. Ostomy Wound Manage. 2009;55(11):28-38. | |
dc.relation | 5. Schwartz SS, Epstein S, Corkey BE, Grant SF, Gavin JR, 3rd, Aguilar RB. The Time Is Right for a New Classification System for Diabetes: Rationale and Implications of the beta-Cell-Centric Classification Schema. Diabetes Care. 2016;39(2):179-86. | |
dc.relation | 6. Skyler JS, Bakris GL, Bonifacio E, Darsow T, Eckel RH, Groop L, et al. Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. Diabetes. 2017;66(2):241-55. | |
dc.relation | 7. Vargas-Uricoechea H, Casas-Figueroa LA. An Epidemiologic Analysis of Diabetes in Colombia. Ann Glob Health. 2015;81(6):742-53. | |
dc.relation | 8. Zhang P, Lu J, Jing Y, Tang S, Zhu D, Bi Y. Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis (dagger). Ann Med. 2017;49(2):106-16 | |
dc.relation | 9. Armstrong DG, Lavery LA. Diabetic foot ulcers: prevention, diagnosis and classification. Am Fam Physician. 1998;57(6):1325-32, 37-8 | |
dc.relation | 10. Armstrong DG, Boulton AJM, Bus SA. Diabetic Foot Ulcers and Their Recurrence. N Engl J Med. 2017;376(24):2367-75. | |
dc.relation | 11. Perez-Favila A, Martinez-Fierro ML, Rodriguez-Lazalde JG, Cid-Baez MA, Zamudio-Osuna MJ, Martinez-Blanco MDR, et al. Current Therapeutic Strategies in Diabetic Foot Ulcers. Medicina (Kaunas). 2019;55(11). | |
dc.relation | 12. Schaper NC. Diabetic foot ulcer classification system for research purposes: a progress report on criteria for including patients in research studies. Diabetes Metab Res Rev. 2004;20 Suppl 1:S90-5 | |
dc.relation | 13. Gonzalez AC, Costa TF, Andrade ZA, Medrado AR. Wound healing - A literature review. An Bras Dermatol. 2016;91(5):614-20 | |
dc.relation | 14. Ridiandries A, Tan JTM, Bursill CA. The Role of Chemokines in Wound Healing. Int J Mol Sci. 2018;19(10). | |
dc.relation | 15. Jhamb S, Vangaveti VN, Malabu UH. Genetic and molecular basis of diabetic foot ulcers: Clinical review. J Tissue Viability. 2016;25(4):229-36. | |
dc.relation | 16. Nour S, Baheiraei N, Imani R, Khodaei M, Alizadeh A, Rabiee N, et al. A review of accelerated wound healing approaches: biomaterial- assisted tissue remodeling. J Mater Sci Mater Med. 2019;30(10):120. | |
dc.relation | 17. Matoori S, Veves A, Mooney DJ. Advanced bandages for diabetic wound healing. Sci Transl Med. 2021;13(585). | |
dc.relation | 18. Mavrogenis AF, Megaloikonomos PD, Antoniadou T, Igoumenou VG, Panagopoulos GN, Dimopoulos L, et al. Current concepts for the evaluation and management of diabetic foot ulcers. EFORT Open Rev. 2018;3(9):513-25 | |
dc.relation | 19. Borys S, Ludwig-Slomczynska AH, Seweryn M, Hohendorff J, Koblik T, Machlowska J, et al. Negative pressure wound therapy in the treatment of diabetic foot ulcers may be mediated through differential gene expression. Acta Diabetol. 2019;56(1):115-20. | |
dc.relation | 20. Petrofsky JS, Lawson D, Berk L, Suh H. Enhanced healing of diabetic foot ulcers using local heat and electrical stimulation for 30 min three times per week. J Diabetes. 2010;2(1):41-6. | |
dc.relation | 21. Londahl M, Boulton AJM. Hyperbaric oxygen therapy in diabetic foot ulceration: Useless or useful? A battle. Diabetes Metab Res Rev. 2020;36 Suppl 1:e3233 | |
dc.relation | 22. Cao Y, Gang X, Sun C, Wang G. Mesenchymal Stem Cells Improve Healing of Diabetic Foot Ulcer. J Diabetes Res. 2017;2017:9328347. | |
dc.relation | 23. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6(2):230-47 | |
dc.relation | 24. Friedenstein AJ. Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Haematol Blood Transfus. 1980;25:19-29 | |
dc.relation | 25. Hass R, Kasper C, Bohm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9:12. | |
dc.relation | 26. Saeedi P, Halabian R, Imani Fooladi AA. A revealing review of mesenchymal stem cells therapy, clinical perspectives and Modification strategies. Stem Cell Investig. 2019;6:34. | |
dc.relation | 27. de Mayo T, Conget P, Becerra-Bayona S, Sossa CL, Galvis V, Arango-Rodriguez ML. The role of bone marrow mesenchymal stromal cell derivatives in skin wound healing in diabetic mice. PLoS One. 2017;12(6):e0177533. | |
dc.relation | 28. Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007;25(10):2648-59. | |
dc.relation | 29. Basiouny HS, Salama NM, Maadawi ZM, Farag EA. Effect of bone marrow derived mesenchymal stem cells on healing of induced full-thickness skin wounds in albino rat. Int J Stem Cells. 2013;6(1):12-25. | |
dc.relation | 30. L PK, Kandoi S, Misra R, S V, K R, Verma RS. The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev. 2019;46:1-9 | |
dc.relation | 31. Tocci A, Parolini I, Gabbianelli M, Testa U, Luchetti L, Samoggia P, et al. Dual action of retinoic acid on human embryonic/fetal hematopoiesis: blockade of primitive progenitor proliferation and shift from multipotent/erythroid/monocytic to granulocytic differentiation program. Blood. 1996;88(8):2878-88. | |
dc.relation | 32. Nuschke A. Activity of mesenchymal stem cells in therapies for chronic skin wound healing. Organogenesis. 2014;10(1):29-37. | |
dc.relation | 33. Obaid1 HAA, Eljedi2 A. Risk Factors for the Development of Diabetic Foot Ulcers in Gaza Strip: A Case-Control Study. International Journal of Diabetes Research 2019 | |
dc.relation | 34. Eleuteri S, Fierabracci A. Insights into the Secretome of Mesenchymal Stem Cells and Its Potential Applications. Int J Mol Sci. 2019;20(18). | |
dc.relation | 35. Cargnoni A, Piccinelli EC, Ressel L, Rossi D, Magatti M, Toschi I, et al. Conditioned medium from amniotic membrane-derived cells prevents lung fibrosis and 51 Protocolo V-01 – 26 de febrero 2020 preserves blood gas exchanges in bleomycin-injured mice-specificity of the effects and insights into possible mechanisms. Cytotherapy. 2014;16(1):17-32. | |
dc.relation | 36. Guo ZY, Sun X, Xu XL, Zhao Q, Peng J, Wang Y. Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms. Neural Regen Res. 2015;10(4):651-8 | |
dc.relation | 37. Becerra-Bayona SM, Solarte-David VA, Sossa CL, Mateus LC, Villamil M, Pereira J, et al. Mesenchymal stem cells derivatives as a novel and potential therapeutic approach to treat diabetic foot ulcers. Endocrinol Diabetes Metab Case Rep. 2020;2020. | |
dc.relation | 38. Bakker K, Apelqvist J, Lipsky BA, Van Netten JJ, International Working Group on the Diabetic F. The 2015 IWGDF guidance documents on prevention and management of foot problems in diabetes: development of an evidence-based global consensus. Diabetes Metab Res Rev. 2016;32 Suppl 1:2-6 | |
dc.relation | 39. Vargas-Uricoechea H, Casas-Figueroa LA. [Epidemiology of diabetes mellitus in South America: The experience of Colombia]. Clin Investig Arterioscler. 2016;28(5):245- 56 | |
dc.relation | 40. Carstens MH, Quintana FJ, Calderwood ST, Sevilla JP, Rios AB, Rivera CM, et al. Treatment of chronic diabetic foot ulcers with adipose-derived stromal vascular fraction cell injections: Safety and evidence of efficacy at 1 year. Stem Cells Transl Med. 2021 | |
dc.relation | 41. Zhao L, Guo Z, Chen K, Yang W, Wan X, Zeng P, et al. Combined Transplantation of Mesenchymal Stem Cells and Endothelial Colony-Forming Cells Accelerates Refractory Diabetic Foot Ulcer Healing. Stem Cells Int. 2020;2020:8863649 | |
dc.relation | 42. Moon KC, Suh HS, Kim KB, Han SK, Young KW, Lee JW, et al. Potential of Allogeneic Adipose-Derived Stem Cell-Hydrogel Complex for Treating Diabetic Foot Ulcers. Diabetes. 2019;68(4):837-46. | |
dc.relation | 43. Maksimova N, Krasheninnikov M, Zhang Y, Ponomarev E, Pomytkin I, Melnichenko G, et al. Early passage autologous mesenchymal stromal cells accelerate diabetic wound re-epithelialization: A clinical case study. Cytotherapy. 2017;19(12):1548-50 | |
dc.relation | 44. Qin HL, Zhu XH, Zhang B, Zhou L, Wang WY. Clinical Evaluation of Human Umbilical Cord Mesenchymal Stem Cell Transplantation After Angioplasty for Diabetic Foot. Exp Clin Endocrinol Diabetes. 2016;124(8):497-503 | |
dc.relation | 45. Jiang X, Zhang H, Teng M. Effectiveness of Autologous Stem Cell Therapy for the Treatment of Lower Extremity Ulcers: A Systematic Review and Meta-Analysis. Medicine (Baltimore). 2016;95(11):e271 | |
dc.relation | 46. Lavery LA, Fulmer J, Shebetka KA, Regulski M, Vayser D, Fried D, et al. The efficacy and safety of Grafix((R)) for the treatment of chronic diabetic foot ulcers: results of a multi-centre, controlled, randomised, blinded, clinical trial. Int Wound J. 2014;11(5):554-60. | |
dc.relation | 47. Jain P, Perakath B, Jesudason MR, Nayak S. The effect of autologous bone marrow-derived cells on healing chronic lower extremity wounds: results of a randomized controlled study. Ostomy Wound Manage. 2011;57(7):38-44 | |
dc.relation | 48. Dash NR, Dash SN, Routray P, Mohapatra S, Mohapatra PC. Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells. Rejuvenation Res. 2009;12(5):359-66. | |
dc.relation | 49. Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin 52 Protocolo V-01 – 26 de febrero 2020 spray accelerate healing in murine and human cutaneous wounds. Tissue Eng. 2007;13(6):1299-312 | |
dc.relation | 50. Xu Y, Huang S, Ma K, Fu X, Han W, Sheng Z. Promising new potential for mesenchymal stem cells derived from human umbilical cord Wharton's jelly: sweat gland cell-like differentiative capacity. J Tissue Eng Regen Med. 2012;6(8):645-54 | |
dc.relation | 51. Santamaria N, Ogce F, Gorelik A. Healing rate calculation in the diabetic foot ulcer: comparing different methods. Wound Repair Regen. 2012;20(5):786-9. | |
dc.relation | 52. Pedras S, Carvalho R, Pereira Mda G. Sociodemographic and clinical characteristics of patients with diabetic foot ulcer. Rev Assoc Med Bras (1992). 2016;62(2):171-8 | |
dc.relation | 54. Abolfotouh MA, Alfaifi SA, Al-Gannas AS. Risk factors of diabetic foot in central Saudi Arabia. Saudi Med J. 2011;32(7):708-13. | |
dc.relation | 55. MD MHJ. Disorders of the Foot and Ankle: Medical and Surgical Management,.3- Volume Set 2nd Edición | |
dc.relation | 56. Brand PW. Diabetic foot - what can we learn from leprosy? Diabetes/Metabolism Research and Reviews 2012(6). | |
dc.relation | 57. Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract. 2011;92(1):26-36 | |
dc.relation | 58. Wu Q, Lei X, Chen L, Zheng Y, Huang H, Qian C, et al. Autologous platelet-rich gel combined with in vitro amplification of bone marrow mesenchymal stem cell transplantation to treat the diabetic foot ulcer: a case report. Ann Transl Med. 2018;6(15):307 | |
dc.relation | 59. Arno AI, Amini-Nik S, Blit PH, Al-Shehab M, Belo C, Herer E, et al. Human Wharton's jelly mesenchymal stem cells promote skin wound healing through paracrine signaling. Stem Cell Res Ther. 2014;5(1):28 | |
dc.relation | 60. Vieira Paladino F, de Moraes Rodrigues J, da Silva A, Goldberg AC. The Immunomodulatory Potential of Wharton's Jelly Mesenchymal Stem/Stromal Cells. Stem Cells Int. 2019;2019:3548917 | |
dc.relation | 61. Stefanska K, Ozegowska K, Hutchings G, Popis M, Moncrieff L, Dompe C, et al. Human Wharton's Jelly-Cellular Specificity, Stemness Potency, Animal Models, and Current Application in Human Clinical Trials. J Clin Med. 2020;9(4) | |
dc.relation | 62. da Silva Meirelles L, Bolontrade MF, Markoski MM, Dallagiovanna B, Alaniz L. Improving the Therapeutic Ability of Mesenchymal Stem/Stromal Cells for the Treatment of Conditions Influenced by Immune Cells. Stem Cells Int. 2019;2019:6820395 | |
dc.relation | 63. Yoo KH, Jang IK, Lee MW, Kim HE, Yang MS, Eom Y, et al. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol. 2009;259(2):150-6 | |
dc.relation | 64. Li M, Soder R, Abhyankar S, Abdelhakim H, Braun MW, Trinidad CV, et al. WJMSC-derived small extracellular vesicle enhance T cell suppression through PD-L1. J Extracell Vesicles. 2021;10(4):e12067 | |
dc.relation | 65. Maacha S, Sidahmed H, Jacob S, Gentilcore G, Calzone R, Grivel JC, et al. Paracrine Mechanisms of Mesenchymal Stromal Cells in Angiogenesis. Stem Cells Int. 2020;2020:4356359 | |
dc.relation | 66. Valle-Prieto A, Conget PA. Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev. 2010;19(12):1885-93 | |
dc.relation | 67. Lozito TP, Jackson WM, Nesti LJ, Tuan RS. Human mesenchymal stem cells generate a distinct pericellular zone of MMP activities via binding of MMPs and secretion of high levels of TIMPs. Matrix Biol. 2014;34:132-43 | |
dc.relation | 68. Chen D, Hao H, Fu X, Han W. Insight into Reepithelialization: How Do Mesenchymal Stem Cells Perform? Stem Cells Int. 2016;2016:6120173. | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
dc.rights | Abierto (Texto Completo) | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.title | Evaluación de la velocidad de cierre de las úlceras de pie diabético con el uso de derivados acelulares de células madre mesenquimales como tratamiento | |