dc.contributor | Arizmendi Pereira, Carlos Julio | |
dc.contributor | Arizmendi Pereira, Carlos Julio [0001381550] | |
dc.contributor | Arizmendi Pereira, Carlos Julio [es&oi=ao] | |
dc.contributor | Arizmendi Pereira, Carlos Julio [0000-0002-5850-0775] | |
dc.contributor | Arizmendi Pereira, Carlos Julio [Carlos-Arizmendi] | |
dc.creator | Naranjo Reyes, Kevin Alejandro | |
dc.date.accessioned | 2022-01-25T12:10:32Z | |
dc.date.accessioned | 2022-09-28T19:05:59Z | |
dc.date.available | 2022-01-25T12:10:32Z | |
dc.date.available | 2022-09-28T19:05:59Z | |
dc.date.created | 2022-01-25T12:10:32Z | |
dc.date.issued | 2021 | |
dc.identifier | http://hdl.handle.net/20.500.12749/15350 | |
dc.identifier | instname:Universidad Autónoma de Bucaramanga - UNAB | |
dc.identifier | reponame:Repositorio Institucional UNAB | |
dc.identifier | repourl:https://repository.unab.edu.co | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3712152 | |
dc.description.abstract | Se aplicó una serie de modelos que predicen el Índice de Calidad del Aire (ICA) a partir de las publicaciones realizadas por los habitantes de Bucaramanga en Twitter, para determinar la calidad del aire en la ciudad. Se seleccionó el mejor modelo a partir de diferentes métricas con base en el accuracy de la clasificación. Para ello, se recopilaron mediciones reales del ICA en varios puntos de la ciudad y se hizo la extracción de Tweets para la misma serie temporal. Al emplear distintos algoritmos de reducción de dimensionalidad junto con técnicas de clasificación, tales técnicas son FSCNCA, Forward Selection, LDA y Redes Neuronales, se desarrollaron los modelos de predicción y se seleccionó el de mayor porcentaje de clasificación. El modelo que emplea FSCNCA como técnica de reducción de dimensionalidad y LDA como clasificador fue el que obtuvo el mejor porcentaje de clasificación, con un Accuracy de 69.07% en el conjunto Validation. | |
dc.language | spa | |
dc.publisher | Universidad Autónoma de Bucaramanga UNAB | |
dc.publisher | Facultad Ingeniería | |
dc.publisher | Pregrado Ingeniería Mecatrónica | |
dc.relation | FANG, Guor-Cheng et al., “Characterization of particulate, metallic elements of TSP, PM2.5 and PM2.5-10 aerosols at a farm sampling site in Taiwan, Taichung,” Sci. Total Environ., Jun. 2003, vol. 308, no. 1–3, pp. 157–166, doi: 10.1016/S0048-9697(02)00648-4 | |
dc.relation | BILLET. Sylvain et al., “Ambient particulate matter (PM2.5): physicochemical characterization and metabolic activation of the organic fraction in human lung epithelial cells (A549),” Environ. Res., Oct. 2007, vol. 105, no. 2, pp. 212–223, doi: 10.1016/J.ENVRES.2007.03.001. | |
dc.relation | ARCINIÉGAS, Cesar S., “Diagnóstico y control de material particulado: partículas suspendidas totales y fracción respirable PM10,” 2012, doi: 10.17151/luaz.2012.34.12 | |
dc.relation | “Contaminantes del aire: Materias particuladas.” http://www.murciasalud.es/pagina.php?id=244308&# (accessed Oct. 04, 2021). | |
dc.relation | “Monitoreo aire - IDEAM.” http://www.siac.gov.co/monitoreoaire (accessed Oct. 04, 2021). | |
dc.relation | “Informe Carga de Enfermedad Ambiental en Colombia.” https://www.ins.gov.co/Noticias/Paginas/Informe-Carga-de-EnfermedadAmbiental-en-Colombia.aspx (accessed Oct. 04, 2021). | |
dc.relation | M. y E. A. IDEAM, Instituto de hidrología, “Índice de calidad del aire (ICA),” no. 571, p. 2013, 2012, [Online]. Available: http://www.ideam.gov.co/documents/11769/641368/2.01+HM+Indice+calidad +aire.pdf/5130ffb3-a1bf-4d23-a663-b4c51327cc05 | |
dc.relation | “Series Temporales: Introducción,” Accessed: Oct. 04, 2021. [Online]. Available: http://halweb.uc3m.es/esp/Personal/personas/jmmarin/esp/EDescrip/tema7. pdf | |
dc.relation | “How Dynamic Neural Networks Work - MATLAB & Simulink - MathWorks América Latina.” https://la.mathworks.com/help/deeplearning/ug/how-dynamic-neuralnetworks-work.html (accessed Oct. 05, 2021). | |
dc.relation | “Choose a Multilayer Neural Network Training Function - MATLAB & Simulink - MathWorks América Latina.” https://la.mathworks.com/help/deeplearning/ug/choose-a-multilayer-neuralnetwork-training-function.html (accessed Oct. 05, 2021). | |
dc.relation | BENRHMACH, G., NAMIR, K., NAMIR, A. and BOUYAGHROUMNI, J., “Nonlinear Autoregressive Neural Network and Extended Kalman Filters for Prediction of Financial Time Series,” J. Appl. Math., 2020, vol. 2020, doi: 10.1155/2020/5057801 | |
dc.relation | “Design Time Series NARX Feedback Neural Networks - MATLAB & Simulink - MathWorks América Latina.” https://la.mathworks.com/help/deeplearning/ug/design-time-series-narxfeedback-neural-networks.html (accessed Oct. 05, 2021). | |
dc.relation | “Levenberg-Marquardt backpropagation - MATLAB trainlm - MathWorks América Latina.” https://la.mathworks.com/help/deeplearning/ref/trainlm.html (accessed Oct. 05, 2021). | |
dc.relation | “Bayesian regularization backpropagation - MATLAB trainbr - MathWorks América Latina.” https://la.mathworks.com/help/deeplearning/ref/trainbr.html?s_tid=doc_ta (accessed Oct. 05, 2021). | |
dc.relation | “Scaled conjugate gradient backpropagation - MATLAB trainscg - MathWorks América Latina.” https://la.mathworks.com/help/deeplearning/ref/trainscg.html?searchHighlight =trainscg&s_tid=srchtitle (accessed Oct. 05, 2021). | |
dc.relation | “What is Natural Language Processing? | IBM.” https://www.ibm.com/cloud/learn/natural-language-processing#toc-what-isna-jLju4DjE (accessed Oct. 05, 2021). | |
dc.relation | “Procesamiento del lenguaje natural con NLTK para Ingeniería social automatizada – Seguridad en Sistemas y Técnicas de Hacking. TheHackerWay (THW).” https://thehackerway.com/2015/02/17/procesamiento-del-lenguaje-naturalcon-nltk-para-ingenieria-social-automatizada/ (accessed Oct. 05, 2021). | |
dc.relation | “Análisis discriminante lineal (LDA) y análisis discriminante cuadrático (QDA).” https://www.cienciadedatos.net/documentos/28_linear_discriminant_analysis _lda_y_quadratic_discriminant_analysis_qda (accessed Oct. 05, 2021). | |
dc.relation | “Introduction to Feature Selection - MATLAB & Simulink - MathWorks América Latina.” https://la.mathworks.com/help/stats/feature-selection.html (accessed Oct. 06, 2021). | |
dc.relation | YANG, W., WANG, K., and ZUO, W. “Neighborhood component feature selection for high-dimensional data,” J. Comput., 2012, vol. 7, no. 1, pp. 162–168, doi: 10.4304/JCP.7.1.161-168. | |
dc.relation | “Neighborhood Component Analysis (NCA) Feature Selection - MATLAB & Simulink - MathWorks América Latina.” https://la.mathworks.com/help/stats/neighborhood-component-analysis.html (accessed Oct. 06, 2021). | |
dc.relation | MARCANO, A. C., QUINTANILLA, J. D., CORTINA M. G. J., and ANDINA, D. “Feature selection using Sequential Forward Selection and classification 79 applying Artificial Metaplasticity Neural Network,” IECON Proc. 2010 (Industrial Electron. Conf., pp. 2845–2850, doi: 10.1109/IECON.2010.5675075 | |
dc.relation | CHANDRA, B. “Gene Selection Methods for Microarray Data,” Appl. Comput. Med. Heal., Jan. 2016 pp. 45–78, doi: 10.1016/B978-0-12-803468-2.00003-5. | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
dc.rights | Abierto (Texto Completo) | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.title | Análisis de correlación entre el índice de calidad del aire y el impacto en Twitter para la ciudad de Bucaramanga aplicando análisis de series temporales, extracción y procesamiento de lenguaje natural | |