| dc.contributor | Bernal García, Edgar Augusto | |
| dc.contributor | Peña Castellanos, Angela María | |
| dc.contributor | Ochoa Vera, Miguel Enrique | |
| dc.contributor | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000898465 | |
| dc.contributor | https://orcid.org/0000-0003-1693-9429 | |
| dc.contributor | https://orcid.org/0000-0002-4552-3388 | |
| dc.contributor | https://www.scopus.com/authid/detail.uri?authorId=36987156500 | |
| dc.contributor | https://www.researchgate.net/profile/Miguel_Ochoa7 | |
| dc.creator | González Plata, Fabio Alberto | |
| dc.date.accessioned | 2020-08-15T05:57:00Z | |
| dc.date.available | 2020-08-15T05:57:00Z | |
| dc.date.created | 2020-08-15T05:57:00Z | |
| dc.date.issued | 2020 | |
| dc.identifier | http://hdl.handle.net/20.500.12749/7187 | |
| dc.identifier | instname:Universidad Autónoma de Bucaramanga - UNAB | |
| dc.identifier | reponame:Repositorio Institucional UNAB | |
| dc.identifier | repourl:https://repository.unab.edu.co | |
| dc.description.abstract | Introducción: La forma de identificar a los pacientes hematoncológicos con riesgo de bacteriemia en el contexto de lesión de barrera mucosa está asociada a lo profundo de la neutropenia. La posibilidad de identificar a través del hisopado rectal la colonización por enterobacterias productoras de carbapenemasas ha cambiado el enfoque de la terapia antibiótica empírica dado que en este lapso de tiempo podemos impactar drásticamente en la mortalidad, bacteriemia por EPC es una verdadera emergencia médica (equiparable a Infarto de miocardio con elevación del ST y ECV isquémico en ventana) engloba la Neutropenia febril, inmunosupresión y severas comorbilidades como las Neoplasias hematolinfoides.
Sin embargo se desconoce la correlación entre colonización rectal del hisopado y la predicción de la bacteriemia, esto ha motivando a conocer que otros factores de riesgo están asociados y la utilidad del hisopado rectal como predictor de bacteriemia.
Evaluar la incidencia de bacteriemia por enterobacterias productoras de carbapenemasas, en pacientes que se encontraran recibiendo quimioterapia con neutropenia severa, fiebre e hisopado rectal positivo, en el servicio de Hemato-oncología. de la clínica la FOSCAL, en el periodo comprendido entre Enero 1 de 2016 y Diciembre 31 de 2018. | |
| dc.language | spa | |
| dc.publisher | Universidad Autónoma de Bucaramanga UNAB | |
| dc.publisher | Facultad Ciencias de la Salud | |
| dc.publisher | Especialización en Medicina Interna | |
| dc.relation | 1. Atallah E, Cortes J, O’Brien S, Pierce S, Rios MB, Estey E, et al. Establishment of baseline toxicity expectations with standard frontline chemotherapy in acute myelogenous leukemia. Blood [Internet]. 2007 Nov 15 [cited 2018 Nov 23];110(10):3547–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17673605 | |
| dc.relation | 2. Zhang MJ, Hoelzer D, Horowitz MM, Gale RP, Messerer D, Klein JP, et al. Long-term follow-up of adults with acute lymphoblastic leukemia in first remission treated with chemotherapy or bone marrow transplantation. The Acute Lymphoblastic Leukemia Working Committee. Ann Intern Med [Internet]. 1995 Sep 15 [cited 2018 Nov 23];123(6):428–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7639442 | |
| dc.relation | 3. DeVita - Cancer : Principles and Practice of Oncology. Clin Trials. 2001;(July). | |
| dc.relation | 4. Enciso L, Rodríguez M, del Socorro García J, Rosales J, Enrique Duque J, Abello V, et al. Consenso Colombiano sobRe el tRatamiento De la leuCemia linfoCítiCa CRóniCa Consenso colombiano sobre el tratamiento de la leucemia linfocítica crónica Colombian consensus for the treatment of chronic lymphocytic leukemia Miembros del Consenso Colombiano de Hematología Oncológica [Internet]. [cited 2018 Nov 25]. Available from: http://www.ebmt.org/5Workingparty/CLWP/clwp6.htlm. | |
| dc.relation | 5. Kantarjian HM, O’Brien S, Smith TL, Cortes J, Giles FJ, Beran M, et al. Results of Treatment With Hyper-CVAD, a Dose-Intensive Regimen, in Adult Acute Lymphocytic Leukemia. J Clin Oncol [Internet]. 2000 Feb [cited 2018 Nov 25];18(3):547–547. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10653870 | |
| dc.relation | 6. Kantarjian H, Thomas D, O’Brien S, Cortes J, Giles F, Jeha S, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer [Internet]. 2004 Dec 15 [cited 2018 Nov 25];101(12):2788–801. Available from: http://doi.wiley.com/10.1002/cncr.20668 | |
| dc.relation | 7. Análisis de Situación del Cáncer en Colombia [Internet]. 2015 [cited 2018 Nov 25]. Available from: http://www.cancer.gov.co/Situacion_del_Cancer_en_Colombia_2015.pdf | |
| dc.relation | 8. Carlisle PS, Gucalp R, Wiernik PH. Nosocomial infections in neutropenic cancer patients. Infect Control Hosp Epidemiol [Internet]. 1993 Jun [cited 2018 Nov 25];14(6):320–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8360462 | |
| dc.relation | 9. Orasch C, Weisser M, Mertz D, Conen A, Heim D, Christen S, et al. Comparison of infectious complications during induction/consolidation chemotherapy versus allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant [Internet]. 2010 Mar 10 [cited 2018 Nov 25];45(3):521–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19668238 | |
| dc.relation | 10. Cano A, Gutiérrez-Gutiérrez B, Machuca I, Gracia-Ahufinger I, Pérez-Nadales E, Causse M, et al. Risks of Infection and Mortality Among Patients Colonized With Klebsiella pneumoniae Carbapenemase–Producing K. pneumoniae: Validation of Scores and Proposal for Management. Clin Infect Dis [Internet]. 2018 Apr 3 [cited 2018 Nov 25];66(8):1204–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29126110 | |
| dc.relation | 11. Guía de práctica clínica [Internet]. [cited 2018 Nov 25]. Available from: www.cancer.gov.co | |
| dc.relation | 12. M. Giannella, E. M. Trecarichi, F. G. De Rosa et al, Risk factors for carbapenem-resistant Klebsiella pneumoniae bloodstream infection among rectal carriers: A prospective observational multicentre study. | |
| dc.relation | 13. Albiger B, Glasner C, Struelens MJ, Grundmann H, Monnet DL, European Survey of Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) working group. Carbapenemase-producing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May 2015. Eurosurveillance [Internet]. 2015 Nov 12 [cited 2018 Nov 24];20(45):30062. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26675038 | |
| dc.relation | 14. Surveillance atlas of infectious diseases. The European Centre for Disease Prevention and Control (ECDC) website. http://ecdc. europa.eu/en/healthtopics/antimicrobial_resistance/database/Pages/table_reports.aspx. Published 2015. Accessed October 9 2016. Atlas de vigilancia de enfermedades infecciosas [Internet]. 2016. 2016 [cited 2018 Nov 25]. p. 1. Available from: https://atlas.ecdc.europa.eu/public/index.aspx | |
| dc.relation | 15. Culakova E, Thota R, Poniewierski MS, Kuderer NM, Wogu AF, Dale DC, et al. Patterns of chemotherapy-associated toxicity and supportive care in US oncology practice: a nationwide prospective cohort study. Cancer Med [Internet]. 2014 Apr [cited 2018 Nov 23];3(2):434–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24706592 | |
| dc.relation | 16. Weycker D, Li X, Edelsberg J, Barron R, Kartashov A, Xu H, et al. Risk and Consequences of Chemotherapy-Induced Febrile Neutropenia in Patients With Metastatic Solid Tumors. J Oncol Pract [Internet]. 2015 Jan [cited 2018 Nov 23];11(1):47–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25491042 | |
| dc.relation | 17. Chan A, Fu WH, Shih V, Coyuco JC, Tan SH, Ng R. Impact of colony-stimulating factors to reduce febrile neutropenic events in breast cancer patients receiving docetaxel plus cyclophosphamide chemotherapy. Support Care Cancer [Internet]. 2011 Apr 17 [cited 2018 Nov 23];19(4):497–504. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20232087 | |
| dc.relation | 18. Fiegl M, Steger GG, Studnicka M, Eisterer W, Jaeger C, Willenbacher W. Pegfilgrastim prophylaxis in patients at different levels of risk for chemotherapy-associated febrile neutropenia: an observational study. Curr Med Res Opin [Internet]. 2013 May 19 [cited 2018 Nov 23];29(5):505–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23444969 | |
| dc.relation | 19. Aapro M, Crawford J, Kamioner D. Prophylaxis of chemotherapy-induced febrile neutropenia with granulocyte colony-stimulating factors: where are we now? Support Care Cancer [Internet]. 2010 May 27 [cited 2018 Nov 23];18(5):529–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20191292 | |
| dc.relation | 20. Aarts MJ, Peters FP, Mandigers CM, Dercksen MW, Stouthard JM, Nortier HJ, et al. Primary Granulocyte Colony-Stimulating Factor Prophylaxis During the First Two Cycles Only or Throughout All Chemotherapy Cycles in Patients With Breast Cancer at Risk for Febrile Neutropenia. J Clin Oncol [Internet]. 2013 Dec 1 [cited 2018 Nov 23];31(34):4290–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23630211 | |
| dc.relation | 21. Aapro MS, Bohlius J, Cameron DA, Lago LD, Donnelly JP, Kearney N, et al. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur J Cancer [Internet]. 2011 Jan [cited 2018 Nov 23];47(1):8–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21095116 | |
| dc.relation | 22. Ozer H, Armitage JO, Bennett CL, Crawford J, Demetri GD, Pizzo PA, et al. 2000 Update of Recommendations for the Use of Hematopoietic Colony-Stimulating Factors: Evidence-Based, Clinical Practice Guidelines. J Clin Oncol [Internet]. 2000 Oct 20 [cited 2018 Nov 23];18(20):3558–85. Available from: http://ascopubs.org/doi/10.1200/JCO.2000.18.20.3558 | |
| dc.relation | 23. Lyman GH, Abella E, Pettengell R. Risk factors for febrile neutropenia among patients with cancer receiving chemotherapy: A systematic review. Crit Rev Oncol Hematol [Internet]. 2014 Jun [cited 2018 Nov 23];90(3):190–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24434034 | |
| dc.relation | 24. Jones SE, Savin MA, Holmes FA, O’Shaughnessy JA, Blum JL, Vukelja S, et al. Phase III Trial Comparing Doxorubicin Plus Cyclophosphamide With Docetaxel Plus Cyclophosphamide As Adjuvant Therapy for Operable Breast Cancer. J Clin Oncol [Internet]. 2006 Dec 1 [cited 2018 Nov 25];24(34):5381–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17135639 | |
| dc.relation | 25. Ramos P, , Ricardo Sánchez, Óscar Gamboa AFC. Factores pronósticos relacionados con la mortalidad en pacientes con cáncer y neutropenia febril. Rev Colomb Hematol y Oncol. | |
| dc.relation | 26. Muñoz Maya O G, Rodelo Vélez A M, Carvajal J J, González J M, Jaimes Barragán F A. Características clínicas y microbiológicas de los pacientes neutropénicos febriles con neoplasias hematológicas. Iatreia. 2008; 21(1): S9. | |
| dc.relation | 27. Josa DF, Bustos G, Cristina I, Esparza G. Evaluación de tres métodos de tamizaje para detección de. :253–61. | |
| dc.relation | 28. Iredell J, Brown J, Tagg K. Antibiotic resistance in Enterobacteriaceae: mechanisms and clinical implications. BMJ [Internet]. 2016 Feb 8 [cited 2018 Nov 24];352:h6420. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26858245 | |
| dc.relation | 29. Frère J-M, Galleni M, Bush K, Dideberg O. Is it necessary to change the classification of β-lactamases? J Antimicrob Chemother [Internet]. 2005 Jun 1 [cited 2018 Nov 25];55(6):1051–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15886262 | |
| dc.relation | 30. Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med [Internet]. 2012 May [cited 2018 Nov 24];18(5):263–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22480775 | |
| dc.relation | 31. Dautzenberg MJD, Wekesa AN, Gniadkowski M, Antoniadou A, Giamarellou H, Petrikkos GL, et al. The Association Between Colonization With Carbapenemase-Producing Enterobacteriaceae and Overall ICU Mortality. Crit Care Med [Internet]. 2015 Jun [cited 2018 Nov 25];43(6):1170–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25882764 | |
| dc.relation | 32. Nordmann P, Mariotte S, Naas T, Labia R, Nicolas MH. Biochemical properties of a carbapenem-hydrolyzing beta-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli. Antimicrob Agents Chemother [Internet]. 1993 May [cited 2018 Nov 24];37(5):939–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8517720 | |
| dc.relation | 33. Aubron C, Poirel L, Ash RJ, Nordmann P. Carbapenemase-producing Enterobacteriaceae, U.S. rivers. Emerg Infect Dis. 2005;11(2):260–4. | |
| dc.relation | 34. Queenan AM, Bush K. Carbapenemases: the Versatile -Lactamases. Clin Microbiol Rev [Internet]. 2007 Jul 1 [cited 2018 Nov 24];20(3):440–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17630334 | |
| dc.relation | 35. Borer A, Saidel-Odes L, Riesenberg K, Eskira S, Peled N, Nativ R, et al. Attributable Mortality Rate for Carbapenem-Resistant Klebsiella pneumoniae Bacteremia. Infect Control Hosp Epidemiol [Internet]. 2009 Oct 2 [cited 2018 Nov 24];30(10):972–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19712030 | |
| dc.relation | 36. Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, et al. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother [Internet]. 1999 Jul [cited 2018 Nov 24];43(7):1584–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10390207 | |
| dc.relation | 37. Docquier J-D, Lamotte-Brasseur J, Galleni M, Amicosante G, Frère J-M, Rossolini GM. On functional and structural heterogeneity of VIM-type metallo-beta-lactamases. J Antimicrob Chemother [Internet]. 2003 Feb [cited 2018 Nov 24];51(2):257–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12562689 | |
| dc.relation | 38. Nordmann P, Poirel L, Toleman MA, Walsh TR. Does broad-spectrum -lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by Gram-negative bacteria? J Antimicrob Chemother [Internet]. 2011 Apr 1 [cited 2018 Nov 25];66(4):689–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21393184 | |
| dc.relation | 39. Coque TM, Novais Â, Carattoli A, Poirel L, Pitout J, Peixe L, et al. Dissemination of Clonally Related Escherichia coli Strains Expressing Extended-Spectrum β-Lactamase CTX-M-15. Emerg Infect Dis [Internet]. 2008 Feb [cited 2018 Nov 25];14(2):195–200. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18258110 | |
| dc.relation | 40. Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis [Internet]. 2011 May [cited 2018 Nov 24];11(5):355–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21478057 | |
| dc.relation | 41. Kaase M, Nordmann P, Wichelhaus TA, Gatermann SG, Bonnin RA, Poirel L. NDM-2 carbapenemase in Acinetobacter baumannii from Egypt. J Antimicrob Chemother [Internet]. 2011 Jun 1 [cited 2018 Nov 24];66(6):1260–2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21427107 | |
| dc.relation | 42. Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother [Internet]. 2004 Jan [cited 2018 Nov 24];48(1):15–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14693513 | |
| dc.relation | 43. Potron A, Kalpoe J, Poirel L, Nordmann P. European dissemination of a single OXA-48-producing Klebsiella pneumoniae clone. Clin Microbiol Infect [Internet]. 2011 Dec [cited 2018 Nov 24];17(12):E24–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21973185 | |
| dc.relation | 44. Carmeli Y, Akova M, Cornaglia G, Daikos GL, Garau J, Harbarth S, et al. Controlling the spread of carbapenemase-producing Gram-negatives: therapeutic approach and infection control. Clin Microbiol Infect [Internet]. 2010 Feb [cited 2018 Nov 25];16(2):102–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20085604 | |
| dc.relation | 45. Tumbarello M, Viale P, Viscoli C, Trecarichi EM, Tumietto F, Marchese A, et al. Predictors of Mortality in Bloodstream Infections Caused by Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae: Importance of Combination Therapy. Clin Infect Dis [Internet]. 2012 Oct 1 [cited 2018 Nov 25];55(7):943–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22752516 | |
| dc.relation | 46. Qureshi ZA, Paterson DL, Potoski BA, Kilayko MC, Sandovsky G, Sordillo E, et al. Treatment Outcome of Bacteremia Due to KPC-Producing Klebsiella pneumoniae: Superiority of Combination Antimicrobial Regimens. Antimicrob Agents Chemother [Internet]. 2012 Apr [cited 2018 Nov 25];56(4):2108–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22252816 | |
| dc.relation | 47. Zarkotou O, Pournaras S, Tselioti P, Dragoumanos V, Pitiriga V, Ranellou K, et al. Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect [Internet]. 2011 Dec [cited 2018 Nov 25];17(12):1798–803. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21595793 | |
| dc.relation | 48. Pano-Pardo JR, Ruiz-Carrascoso G, Navarro-San Francisco C, Gomez-Gil R, Mora-Rillo M, Romero-Gomez MP, et al. Infections caused by OXA-48-producing Klebsiella pneumoniae in a tertiary hospital in Spain in the setting of a prolonged, hospital-wide outbreak. J Antimicrob Chemother [Internet]. 2013 Jan 1 [cited 2018 Nov 25];68(1):89–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23045224 | |
| dc.relation | 49. Daikos GL, Panagiotakopoulou A, Tzelepi E, Loli A, Tzouvelekis LS, Miriagou V. Activity of imipenem against VIM-1 metallo-β-lactamase-producing Klebsiella pneumoniae in the murine thigh infection model. Clin Microbiol Infect [Internet]. 2007 Feb [cited 2018 Nov 25];13(2):202–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17328735 | |
| dc.relation | 50. Villegas MV, Pallares CJ, Escandón-Vargas K, Hernández-Gómez C, Correa A, Álvarez C, et al. Characterization and Clinical Impact of Bloodstream Infection Caused by Carbapenemase-Producing Enterobacteriaceae in Seven Latin American Countries. Selvey LA, editor. PLoS One [Internet]. 2016 Apr 22 [cited 2018 Nov 25];11(4):e0154092. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27104910 | |
| dc.relation | 51. Gomez-Simmonds A, Nelson B, Eiras DP, Loo A, Jenkins SG, Whittier S, et al. Combination Regimens for Treatment of Carbapenem-Resistant Klebsiella pneumoniae Bloodstream Infections. Antimicrob Agents Chemother [Internet]. 2016 Jun [cited 2018 Nov 25];60(6):3601–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27044555 | |
| dc.relation | 52. Falagas ME, Lourida P, Poulikakos P, Rafailidis PI, Tansarli GS. Antibiotic Treatment of Infections Due to Carbapenem-Resistant Enterobacteriaceae: Systematic Evaluation of the Available Evidence. Antimicrob Agents Chemother [Internet]. 2014 Feb [cited 2018 Nov 25];58(2):654–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24080646 | |
| dc.relation | 53. Fraenkel-Wandel Y, Raveh-Brawer D, Wiener-Well Y, Yinnon AM, Assous M V. Mortality due to bla KPC Klebsiella pneumoniae bacteraemia. J Antimicrob Chemother [Internet]. 2016 Apr [cited 2018 Nov 25];71(4):1083–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26661396 | |
| dc.relation | 54. Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and Other Enterobacteriaceae: an Evolving Crisis of Global Dimensions. Clin Microbiol Rev [Internet]. 2012 Oct 1 [cited 2018 Nov 25];25(4):682–707. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23034326 | |
| dc.relation | 55. Mouloudi E, Protonotariou E, Zagorianou A, Iosifidis E, Karapanagiotou A, Giasnetsova T, et al. Bloodstream Infections Caused by Metallo-β-Lactamase/Klebsiella pneumoniae Carbapenemase–Producing K. pneumoniae among Intensive Care Unit Patients in Greece: Risk Factors for Infection and Impact of Type of Resistance on Outcomes. Infect Control Hosp Epidemiol [Internet]. 2010 Dec 2 [cited 2018 Nov 25];31(12):1250–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20973725 | |
| dc.relation | 56. Ben-David D, Kordevani R, Keller N, Tal I, Marzel A, Gal-Mor O, et al. Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clin Microbiol Infect [Internet]. 2012 Jan [cited 2018 Nov 25];18(1):54–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21722257 | |
| dc.relation | 57. Capone A, Giannella M, Fortini D, Giordano A, Meledandri M, Ballardini M, et al. High rate of colistin resistance among patients with carbapenem-resistant Klebsiella pneumoniae infection accounts for an excess of mortality. Clin Microbiol Infect [Internet]. 2013 Jan [cited 2018 Nov 25];19(1):E23–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23137235 | |
| dc.relation | 58. Neuner EA, Yeh J-Y, Hall GS, Sekeres J, Endimiani A, Bonomo RA, et al. Treatment and outcomes in carbapenem-resistant Klebsiella pneumoniae bloodstream infections. Diagn Microbiol Infect Dis [Internet]. 2011 Apr [cited 2018 Nov 25];69(4):357–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21396529 | |
| dc.relation | 59. Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of Carbapenem-Resistant Klebsiella pneumoniae Infection and the Impact of Antimicrobial and Adjunctive Therapies. Infect Control Hosp Epidemiol [Internet]. 2008 Dec 2 [cited 2018 Nov 25];29(12):1099–106. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18973455 | |
| dc.relation | 60. Nguyen M, Eschenauer GA, Bryan M, O’Neil K, Furuya EY, Della-Latta P, et al. Carbapenem-resistant Klebsiella pneumoniae bacteremia: factors correlated with clinical and microbiologic outcomes. Diagn Microbiol Infect Dis [Internet]. 2010 Jun [cited 2018 Nov 25];67(2):180–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20356699 | |
| dc.relation | 61. Satlin MJ, Jenkins SG, Walsh TJ. The Global Challenge of Carbapenem-Resistant Enterobacteriaceae in Transplant Recipients and Patients With Hematologic Malignancies. Clin Infect Dis [Internet]. 2014 May 1 [cited 2018 Nov 25];58(9):1274–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24463280 | |
| dc.relation | 62. Kalpoe JS, Sonnenberg E, Factor SH, del Rio Martin J, Schiano T, Patel G, et al. Mortality associated with carbapenem-resistant Klebsiella pneumoniae infections in liver transplant recipients. Liver Transplant [Internet]. 2012 Apr [cited 2018 Nov 25];18(4):468–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22467548 | |
| dc.relation | 63. Johnson K, Boucher HW. Editorial Commentary: Imminent Challenges: Carbapenem-Resistant Enterobacteriaceae in Transplant Recipients and Patients With Hematologic Malignancy. Clin Infect Dis [Internet]. 2014 May 1 [cited 2018 Nov 25];58(9):1284–6. Available from: https://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciu056 | |
| dc.relation | 64. Satlin MJ, Calfee DP, Chen L, Fauntleroy KA, Wilson SJ, Jenkins SG, et al. Emergence of carbapenem-resistant Enterobacteriaceae as causes of bloodstream infections in patients with hematologic malignancies. Leuk Lymphoma [Internet]. 2013 Apr 14 [cited 2018 Nov 25];54(4):799–806. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22916826 | |
| dc.relation | 65. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med [Internet]. 2008 Jan [cited 2018 Nov 25];34(1):17–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18058085 | |
| dc.relation | 66. Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, et al. Trial of Early, Goal-Directed Resuscitation for Septic Shock. N Engl J Med [Internet]. 2015 Apr 2 [cited 2018 Nov 25];372(14):1301–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25776532 | |
| dc.relation | 67. Rodríguez-Baño J, Cisneros JM, Cobos-Trigueros N, Fresco G, Navarro-San Francisco C, Gudiol C, et al. Diagnosis and antimicrobial treatment of invasive infections due to multidrug-resistant Enterobacteriaceae. Guidelines of the Spanish Society of Infectious Diseases and Clinical Microbiology. Enferm Infecc Microbiol Clin [Internet]. 2015 May [cited 2018 Nov 25];33(5):337.e1-337.e21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25600218 | |
| dc.relation | 68. Retamar P, Portillo MM, López-Prieto MD, Rodríguez-López F, de Cueto M, García M V., et al. Impact of Inadequate Empirical Therapy on the Mortality of Patients with Bloodstream Infections: a Propensity Score-Based Analysis. Antimicrob Agents Chemother [Internet]. 2012 Jan [cited 2018 Nov 25];56(1):472–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22005999 | |
| dc.relation | 69. Qureshi ZA, Syed A, Clarke LG, Doi Y, Shields RK. Epidemiology and Clinical Outcomes of Patients with Carbapenem-Resistant Klebsiella pneumoniae Bacteriuria. Antimicrob Agents Chemother [Internet]. 2014 Jun [cited 2018 Nov 25];58(6):3100–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24637691 | |
| dc.relation | 70. Tumbarello M, Trecarichi EM, De Rosa FG, Giannella M, Giacobbe DR, Bassetti M, et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicrob Chemother [Internet]. 2015 Jul 1 [cited 2018 Nov 25];70(7):2133–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25900159 | |
| dc.relation | 71. Paul M, Carmeli Y, Durante-Mangoni E, Mouton JW, Tacconelli E, Theuretzbacher U, et al. Combination therapy for carbapenem-resistant Gram-negative bacteria. J Antimicrob Chemother [Internet]. 2014 Sep 1 [cited 2018 Nov 25];69(9):2305–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24872346 | |
| dc.relation | 72. Zusman O, Altunin S, Koppel F, Dishon Benattar Y, Gedik H, Paul M. Polymyxin monotherapy or in combination against carbapenem-resistant bacteria: systematic review and meta-analysis. J Antimicrob Chemother [Internet]. 2017 Jan [cited 2018 Nov 25];72(1):29–39. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27624572 | |
| dc.relation | 73. Gutiérrez-Gutiérrez B, Bonomo RA, Carmeli Y, Paterson DL, Pascual A, Rodríguez-Baño J. Combination therapy for bloodstream infections with carbapenemase-producing Enterobacteriaceae – Authors’ reply. Lancet Infect Dis [Internet]. 2017 Oct [cited 2018 Nov 25];17(10):1020–1. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1473309917305224 | |
| dc.relation | 74. Jacobs DM, Safir MC, Huang D, Minhaj F, Parker A, Rao GG. Triple combination antibiotic therapy for carbapenemase-producing Klebsiella pneumoniae: a systematic review. Ann Clin Microbiol Antimicrob [Internet]. 2017 Dec 25 [cited 2018 Nov 25];16(1):76. Available from: https://ann-clinmicrob.biomedcentral.com/articles/10.1186/s12941-017-0249-2 | |
| dc.relation | 75. Daikos GL, Tsaousi S, Tzouvelekis LS, Anyfantis I, Psichogiou M, Argyropoulou A, et al. Carbapenemase-Producing Klebsiella pneumoniae Bloodstream Infections: Lowering Mortality by Antibiotic Combination Schemes and the Role of Carbapenems. Antimicrob Agents Chemother [Internet]. 2014 Apr [cited 2018 Nov 25];58(4):2322–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24514083 | |
| dc.relation | 76. Souli M, Konstantinidou E, Tzepi I, Tsaganos T, Pefanis A, Chryssouli Z, et al. Efficacy of carbapenems against a metallo- -lactamase-producing Escherichia coli clinical isolate in a rabbit intra-abdominal abscess model. J Antimicrob Chemother [Internet]. 2011 Mar 1 [cited 2018 Nov 25];66(3):611–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21177674 | |
| dc.relation | 77. Wiskirchen DE, Nordmann P, Crandon JL, Nicolau DP. In vivo efficacy of human simulated regimens of carbapenems and comparator agents against NDM-1-producing Enterobacteriaceae. Antimicrob Agents Chemother [Internet]. 2014 [cited 2018 Nov 25];58(3):1671–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24379195 | |
| dc.relation | 78. Bulik CC, Christensen H, Li P, Sutherland CA, Nicolau DP, Kuti JL. Comparison of the Activity of a Human Simulated, High-Dose, Prolonged Infusion of Meropenem against Klebsiella pneumoniae Producing the KPC Carbapenemase versus That against Pseudomonas aeruginosa in an In Vitro Pharmacodynamic Model. Antimicrob Agents Chemother [Internet]. 2010 Feb 1 [cited 2018 Nov 25];54(2):804–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19995927 | |
| dc.relation | 79. Daikos GL, Markogiannakis A. Carbapenemase-producing Klebsiella pneumoniae: (when) might we still consider treating with carbapenems? Clin Microbiol Infect [Internet]. 2011 Aug [cited 2018 Nov 25];17(8):1135–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21635663 | |
| dc.relation | 80. Bulik CC, Nicolau DP. Double-carbapenem therapy for carbapenemase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother [Internet]. 2011 Jun [cited 2018 Nov 25];55(6):3002–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21422205 | |
| dc.relation | 81. Giamarellou H, Galani L, Baziaka F, Karaiskos I. Effectiveness of a Double-Carbapenem Regimen for Infections in Humans Due to Carbapenemase-Producing Pandrug-Resistant Klebsiella pneumoniae. Antimicrob Agents Chemother [Internet]. 2013 May [cited 2018 Nov 25];57(5):2388–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23439635 | |
| dc.relation | 82. Ceccarelli G, Falcone M, Giordano A, Mezzatesta ML, Caio C, Stefani S, et al. Successful ertapenem-doripenem combination treatment of bacteremic ventilator-associated pneumonia due to colistin-resistant KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother [Internet]. 2013 Jun [cited 2018 Nov 25];57(6):2900–1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23571536 | |
| dc.relation | 83. Mimoz O, Grégoire N, Poirel L, Marliat M, Couet W, Nordmann P. Broad-Spectrum β-Lactam Antibiotics for Treating Experimental Peritonitis in Mice Due to Klebsiella pneumoniae Producing the Carbapenemase OXA-48. Antimicrob Agents Chemother [Internet]. 2012 May [cited 2018 Nov 25];56(5):2759–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22330912 | |
| dc.relation | 84. Wagenlehner FM, Sobel JD, Newell P, Armstrong J, Huang X, Stone GG, et al. Ceftazidime-avibactam Versus Doripenem for the Treatment of Complicated Urinary Tract Infections, Including Acute Pyelonephritis: RECAPTURE, a Phase 3 Randomized Trial Program. Clin Infect Dis [Internet]. 2016 Sep 15 [cited 2018 Nov 25];63(6):754–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27313268 | |
| dc.relation | 85. Carmeli Y, Armstrong J, Laud PJ, Newell P, Stone G, Wardman A, et al. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study. Lancet Infect Dis [Internet]. 2016 Jun [cited 2018 Nov 25];16(6):661–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27107460 | |
| dc.relation | 86. Woodford N, Turton JF, Livermore DM. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev [Internet]. 2011 Sep [cited 2018 Nov 25];35(5):736–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21303394 | |
| dc.relation | 87. Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis [Internet]. 2016 Feb [cited 2018 Nov 25];16(2):161–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26603172 | |
| dc.relation | 88. Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, et al. Population Pharmacokinetics of Colistin Methanesulfonate and Formed Colistin in Critically Ill Patients from a Multicenter Study Provide Dosing Suggestions for Various Categories of Patients. Antimicrob Agents Chemother [Internet]. 2011 Jul [cited 2018 Nov 25];55(7):3284–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21555763 | |
| dc.relation | 89. Doi Y, Wachino J, Arakawa Y. Aminoglycoside Resistance. Infect Dis Clin North Am [Internet]. 2016 Jun [cited 2018 Nov 25];30(2):523–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27208771 | |
| dc.relation | 90. Gonzalez-Padilla M, Torre-Cisneros J, Rivera-Espinar F, Pontes-Moreno A, Lopez-Cerero L, Pascual A, et al. Gentamicin therapy for sepsis due to carbapenem-resistant and colistin-resistant Klebsiella pneumoniae. J Antimicrob Chemother [Internet]. 2015 Mar 1 [cited 2018 Nov 25];70(3):905–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25344809 | |
| dc.relation | 91. Falagas ME, Giannopoulou KP, Kokolakis GN, Rafailidis PI. Fosfomycin: Use Beyond Urinary Tract and Gastrointestinal Infections. Clin Infect Dis [Internet]. 2008 Apr 1 [cited 2018 Nov 25];46(7):1069–77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18444827 | |
| dc.relation | 92. Giamarellou H. Multidrug-resistant Gram-negative bacteria: how to treat and for how long. Int J Antimicrob Agents [Internet]. 2010 Dec [cited 2018 Nov 25];36:S50–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21129924 | |
| dc.relation | 93. Sastry S, Doi Y. Fosfomycin: Resurgence of an old companion. J Infect Chemother [Internet]. 2016 May [cited 2018 Nov 25];22(5):273–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26923259 | |
| dc.relation | 94. Shorr AF, Pogue JM, Mohr JF. Intravenous fosfomycin for the treatment of hospitalized patients with serious infections. Expert Rev Anti Infect Ther [Internet]. 2017 Oct 3 [cited 2018 Nov 25];15(10):935–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28901793 | |
| dc.relation | 95. Tasina E, Haidich A-B, Kokkali S, Arvanitidou M. Efficacy and safety of tigecycline for the treatment of infectious diseases: a meta-analysis. Lancet Infect Dis [Internet]. 2011 Nov [cited 2018 Nov 25];11(11):834–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21784708 | |
| dc.relation | 96. Bucaneve G, Micozzi A, Picardi M, Ballanti S, Cascavilla N, Salutari P, et al. Results of a Multicenter, Controlled, Randomized Clinical Trial Evaluating the Combination of Piperacillin/Tazobactam and Tigecycline in High-Risk Hematologic Patients With Cancer With Febrile Neutropenia. J Clin Oncol [Internet]. 2014 May 10 [cited 2018 Nov 25];32(14):1463–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24733807 | |
| dc.relation | 97. Iosifidis E, Violaki A, Michalopoulou E, Volakli E, Diamanti E, Koliouskas D, et al. Use of Tigecycline in Pediatric Patients With Infections Predominantly Due to Extensively Drug-Resistant Gram-Negative Bacteria. J Pediatric Infect Dis Soc [Internet]. 2016 Mar 21 [cited 2018 Nov 25];6(2):piw009. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27000866 | |
| dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
| dc.rights | Abierto (Texto Completo) | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.rights | http://purl.org/coar/access_right/c_abf2 | |
| dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
| dc.title | Incidencia y factores asociados a bacteriemia por enterobacterias productoras de carbapenemasas en pacientes con neutropenia febril e hisopado rectal positivo | |