dc.contributorTalavera Portocarrero, Jesús Martín
dc.contributorCabrera Cruz, José Daniel
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000069035
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000084238
dc.contributorhttps://scholar.google.es/citations?hl=es#user=hses_w0AAAAJ
dc.contributorhttps://orcid.org/0000-0002-1815-5057
dc.contributorhttps://www.researchgate.net/profile/Jose_Cabrera_Cruz
dc.contributorGrupo de Investigación Pensamiento Sistémico - GPS
dc.creatorRueda Rueda, Johan Smith
dc.date.accessioned2020-06-26T21:35:50Z
dc.date.accessioned2022-09-28T19:02:41Z
dc.date.available2020-06-26T21:35:50Z
dc.date.available2022-09-28T19:02:41Z
dc.date.created2020-06-26T21:35:50Z
dc.date.issued2018
dc.identifierhttp://hdl.handle.net/20.500.12749/3552
dc.identifierinstname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifierreponame:Repositorio Institucional UNAB
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3711179
dc.description.abstractEl internet de las cosas – IoT, es uno paradigmas tecnológicos con rápido crecimiento en los últimos años, en el que objetos inteligentes o cosas, interactúan entre sí y con recursos físicos y/o virtuales a través de Internet. Junto con este crecimiento hace resonancia uno de los retos que presenta este paradigma, la seguridad de aplicaciones IoT. Este trabajo de investigación parte del problema que existen aplicaciones IoT inseguras por la falta de guías que orienten a los desarrolladores en la implementación del dominio de la ciberseguridad en la fase de diseño y la evaluación de estas. La hipótesis planeada es que, mediante un framework, compuesto por diferentes tipos de modelos, se puede orientar al equipo de desarrollo sobre cómo considerar ciberseguridad en las aplicaciones IoT. Desde este punto de partida, en este trabajo se propone un framework conceptual de ciberseguridad para aplicaciones IoT, llamado SMITH Framework. Este framework está compuesto por dos modelos: el primero, un modelo de gestión de la ciberseguridad cuyo propósito es orientar a los desarrolladores de aplicaciones IoT las consideraciones de ciberseguridad que deben tenerse en cuenta desde la fase de diseño de una solución IoT ; el segundo, un modelo conceptual del dominio de la ciberseguridad en el que se presenten seis componentes de seguridad y su relación con el dominio de IoT. Para verificar la hipótesis planteada, se hizo una validación del SMITH Framework basada en el método ATAM, en el que se diseñó una aplicación IoT orientada por elementos del framework propuesto. Los resultados arrojados permitieron conocer que sí es posible orientar al equipo de desarrollo en la implementación de la ciberseguridad en la fase de diseño de una aplicación IoT, confirmando la hipótesis planteada
dc.languagespa
dc.publisherUniversidad Autónoma de Bucaramanga UNAB
dc.publisherFacultad Ingeniería
dc.publisherMaestría en Telemática
dc.relationRueda Rueda, Johan Smith (2018). Framework conceptual de ciberseguridad para aplicaciones de internet de las cosas. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB
dc.relationAbdmeziem, M. R., Tandjaoui, D., & Romdhani, I. (2016). Architecting the internet of things: state of the art. In Robots and Sensor Clouds (pp. 55–75). Springer.
dc.relationAbrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2017). Agile Software Development Methods: Review and Analysis. CoRR, 478, 107. Retrieved from http://arxiv.org/abs/1709.08439
dc.relationAbreu, D. P., Velasquez, K., Curado, M., & Monteiro, E. (2017). A resilient Internet of Things architecture for smart cities. Annals of Telecommunications, 72(1–2), 19–30.
dc.relationAdams, K. (2015). Non-functional Requirements in Systems Analysis and Design. Springer.
dc.relationAddo, I. D., Ahamed, S. I., Yau, S. S., & Buduru, A. (2014). A reference architecture for improving security and privacy in Internet of Things applications. InM obile Services (MS), 2014 IEEE International Conference on (pp. 108–115).
dc.relationAldosari, H. M. (2015). A Proposed Security Layer for the Internet of Things Communication Reference Model.P rocedia Computer Science, 65, 95–98.
dc.relationAlhamedi, A. H., Snasel, V., Aldosari, H. M., & Abraham, A. (2014). Internet of things communication reference model. In Computational Aspects of Social Networks (CASoN), 2014 6th International Conference on (pp. 61–66).
dc.relationAndolfi, F., Aquilani, F., Balsamo, S., & Inverardi, P. (2000). Deriving QNM from MSCs for performance evaluation of SA. In ACM Workshop on Software Performance (pp. 220–229).
dc.relationAquilani, F., Balsamo, S., & Inverardi, P. (2001). Performance analysis at the software architectural design level.P erformance Evaluation, 45(2–3), 147–178.
dc.relationAshton, K. (2009). That “Internet of Things” Thing. RFID Journal, 1. Retrieved from www.rfidjournal.com/articles/pdf?4986
dc.relationAtamli, A. W., & Martin, A. (2014). Threat-Based Security Analysis for the Internet of Things. In 2014 International Workshop on Secure Internet of Things (pp. 35–43). IEEE. https://doi.org/10.1109/SIoT.2014.10
dc.relationAtzori, L., Iera, A., & Morabito, G. (2010). The internet of things: a survey. Computer Networks, 54, 2787–2805. https://doi.org/10.1007/s10796-014-9492-7
dc.relationAtzori, L., Iera, A., & Morabito, G. (2017). Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigmA. d Hoc Networks, 56, 122–140. https://doi.org/10.1016/j.adhoc.2016.12.004
dc.relationBabar, M. A., & Gorton, I. (2004). Comparison of scenario-based software architecture evaluation methods. In 11th Asia-Pacific Software Engineering Conference, 2004.
dc.relationBalsamo, S., Inverardi, P., & Mangano, C. (1998). An approach to performance evaluation of software architectures. In Proceedings of the 1st international workshop on Software and performance (pp. 178–190).
dc.relationBanda, G., Chaitanya, K., & Mohan, H. (2015). An IoT protocol and framework for OEMs to make IoT-enabled devices forward compatible. In Signal-Image Technology & Internet-Based Systems (SITIS), 2015 11th International Conference on (pp. 824–832).
dc.relationBarker, E. (2016). Recommendation for Key Management Part 1: General. Gaithersburg, MD. https://doi.org/10.6028/NIST.SP.800-57pt1r4
dc.relationBarker, E., Smid, M., Branstad, D., & Chokhani, S. (2013). A Framework for Designing Cryptographic Key Management Systems. Gaithersburg, MD. https://doi.org/10.6028/NIST.SP.800-130
dc.relationBassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S., & Meissner, S. (Eds.). (2013). Enabling Things to Talk. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-40403-0
dc.relationBauer, M., Boussard, M., Bui, N., Carrez, F., Jardak, C., De Loof, J., … Salinas, A. (2013).D eliverable D1.5 – Final architectural reference model for the IoT v3.0.
dc.relationBauer, M., Boussard, M., Bui, N., De Loof, J., Magerkurth, C., Meissner, S., … Walewski, J. W. (2013). IoT Reference Architecture. In A. Bassi, M. Bauer, M. Fiedler, T. Kramp, R. van Kranenburg, S. Lange, & S. Meissner (Eds.), Enabling Things to Talk: Designing IoT solutions with the IoT Architectural Reference Model (pp. 163–211). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-40403-0_8
dc.relationBauer, M., Bui, N., De Loof, J., Magerkurth, C., Nettsträter, A., Stefa, J., & Walewski, J. W. (2013). IoT Reference Model. In Enabling Things to Talk (pp. 113–162). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-40403-0_7
dc.relationBayuk, J. L., Healey, J., Rohmeyer, P., Sachs, M. H., Schmidt, J., & Weiss, J. (2012).C yber Security Policy Guidebook. Wiley Publishing.
dc.relationBeltrán G., Ó. A. (2005). Revisiones sistemáticas de la literatura. Revista Colombiana de Gastroenterología, 20(1), 10.
dc.relationBengtsson, P., & Bosch, J. (1998). Scenario-based software architecture reengineering. In Fifth International Conference on oftware Reuse, 1998 (pp. 308–317). IEEE.
dc.relationBengtsson, P., & Bosch, J. (1999). Architecture level prediction of software maintenance. In Software Maintenance and Reengineering, 1999. Proceedings of the Third European Conference on (pp. 139–147).
dc.relationBengtsson, P., Lassing, N., Bosch, J., & van Vliet, H. (2004). Architecture-level modifiability analysis (ALMA). Journal of Systems and Software, 69(1–2), 129–147.
dc.relationBergner, K., Rausch, A., Sihling, M., & Ternité, T. (2005). DoSAM--domain-specific software architecture comparison model. In Quality of Software Architectures and Software Quality (pp. 4–20). Springer.
dc.relationBernabe, J. B., Hernández, J. L., Moreno, M. V., & Gomez, A. F. S. (2014). Privacy-preserving security framework for a social-aware internet of things. In International conference on ubiquitous computing and ambient intelligence (pp. 408–415).
dc.relationBiolchini, J., Gomes Mian, P., Cruz Natali, A. C., & Horta Travassos, G. (2005). Systematic Review in Software Engineering. Rio de Jainero.
dc.relationBoehm, B. (n.d.). Evaluating a Software Architecture (pp. 19–42).
dc.relationBoehm, B. W., Brown, J. R., & Kaspar, H. (1978). Characteristics of Software Quality.
dc.relationBohli, J.-M., Skarmeta, A., Moreno, M. V., García, D., & Langendörfer, P. (2015). SMARTIE project: Secure IoT data management for smart cities. In Recent Advances in Internet of Things (RIoT), 2015 International Conference on (pp. 1–6).
dc.relationBorgia, E. (2014). The internet of things vision: Key features, applications and open issues. Computer Communications, 54, 1–31. https://doi.org/10.1016/j.comcom.2014.09.008
dc.relationBoroojeni, K. G., Amini, M. H., & Iyengar, S. S. (2016). Smart Grids: Security and Privacy Issues. Springer.
dc.relationBoussard, M., Meissner, S., Nettsträter, A., Olivereau, A., Segura, A. S., Thoma, M., & Walewski, J. W. (2013). A Process for Generating Concrete Architectures. In Enabling Things to Talk (pp. 45–111). Springer.
dc.relationBrooks, F. (1987). No Silver Bullet: Essence and Accidents of Software Engineering.I EEE Computer, 20(4), 10–19.
dc.relationCaltum, E., & Segal, O. (2016). Exploitation of IoT devices for Launching Mass-Scale Attack Campaigns.
dc.relationCapgemini. (2018). Cybersecurity talent — The big gap in cyber protection
dc.relationCaracciolo, A., Lungu, M. F., & Nierstrasz, O. (2014). How Do Software Architects Specify and Validate Quality Requirements? In European Conference on Software Architecture (pp. 374–389). Springer.
dc.relationCASAGRAS Project. (2009). RFID and the Inclusive Model for the Internet of Things.
dc.relationCavalcante, E., Alves, M. P., Batista, T., Delicato, F. C., & Pires, P. F. (2015). An analysis of reference architectures for the internet of things. In Proceedings of the 1st International Workshop on Exploring Component-based Techniques for Constructing Reference Architectures (pp. 13–16).
dc.relationCavalcante, E., Pereira, J., Alves, M. P., Maia, P., Moura, R., Batista, T., … Pires, P. F. (2016). On the interplay of Internet of Things and Cloud Computing: A systematic mapping study. Computer Communications, 89–90, 17–33. https://doi.org/10.1016/j.comcom.2016.03.012
dc.relationChant, I. (2017). The Cybersecurity Talent Shortage Is Here, and It’s a Big Threat to Companies. Retrieved January 10, 2018, from http://theinstitute.ieee.org/ieeeroundup/ blogs/blog/the-cybersecurity-talent-shortage-is-here-and-its-a-big-threat-to-companies
dc.relationChen, Q., Abdelwahed, S., & Erradi, A. (2014). A model-based validated autonomic approach to self-protect computing systems. IEEE Internet of Things Journal, 1(5), 446– 460.
dc.relationCheung, R. C. (1980). A user-oriented software reliability model. IEEE Transactions on Software Engineering, (2), 118–125.
dc.relationChung, L., & do Prado Leite, J. C. S. (2009). On Non-Functional Requirements in Software Engineering. In Conceptual Modeling: Foundations and Applications (pp. 363–379). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-02463-4_19
dc.relationChung, L., Nixon, B. A., Yu, E., & Mylopoulos, J. (2012). Non-functional Requirements in Software Engineering. Springer Science & Business Media.
dc.relationCimpanu, C. (2016). Problems Reappear for IoT Device Owners with Discovery of New DDoS Trojan.
dc.relationCirani, S., Ferrari, G., & Veltri, L. (2013). Enforcing Security Mechanisms in the IP-Based Internet of Things: An Algorithmic Overview. Algorithms, 6(2), 197–226. https://doi.org/10.3390/a6020197
dc.relationCisco. (2015). Mitigating the Cybersecurity Skills Shortage: Top Insights and Actions from Cisco Security Advisory Services
dc.relationCisco. (2016a). Internet of Things at a Glance
dc.relationCisco. (2016b). The Internet of Things. It’s not about things. It’s about service. Retrieved from https://www.jasper.com/sites/default/files/pdf/IoT_Infographic.pdf%7D
dc.relationCisco. (2017). Cisco 2017 Annual Cybersecurity Report.
dc.relationCISCO. The Internet of Things Reference Model (2014). Retrieved from http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_4_2014.pdf
dc.relationClements, P., Garlan, D., Little, R., Nord, R., & Stafford, J. (2003). Documenting software architectures: views and beyond. InP roceedings of the 25th International Conference on Software Engineering (pp. 740--741). ACM. Retrieved from http://delivery.acm.org/10.1145/780000/776928/p740-clements.pdf? ip=200.69.124.106&id=776928&acc=ACTIVE SERVICE&key=4D9619BEF5D5941F.D0AFA4C1BA803950.4D4702B0C3E38B35.4D4702B0C3E38B35&__acm__=1520370891_ece2c328b7de31eaf77e2c65c0fa3758
dc.relationCNSS. (2010). National Information Assurance (IA) Glossary. Committee on National Security Systems.
dc.relationCobb, S. (2016a). Cybersecurity skills gap: It’s big and it’s bad for security. Retrieved from https://www.welivesecurity.com/2016/12/16/cybersecurity-skills-gap-big-and-bad/
dc.relationCobb, S. (2016b). Jackware: When connected cars meet ransomware.
dc.relationCobb, S. (2017). RoT: Ransomware of Things.
dc.relationColciencias. (2016). Tipología de proyectos calificados como de carácter cientifíco, tecnológico e innovación (Vol. 4). https://doi.org/10.1007/s13398-014-0173-7.2
dc.relationCondry, M. W., & Nelson, C. B. (2016). Using Smart Edge IoT Devices for Safer, Rapid Response With Industry IoT Control Operations. Proceedings of the IEEE, 104(5), 938–946.
dc.relationCortellessa, V., & Mirandola, R. (2000). Deriving a queueing network based performance model from UML diagrams. In Proceedings of the 2nd international workshop on Software and performance (pp. 58–70).
dc.relationCurrie, R. (2016). Developments in Car Hacking. SANS Institute InfoSec Reading Room, 1–34.
dc.relationCyberX. (2016). Radiation IoT Cyber Security Campaign.
dc.relationDa Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2243.
dc.relationDalipi, F., & Yayilgan, S. Y. (2016). Security and Privacy Considerations for IoT Application on Smart Grids: Survey and Research Challenges. In 2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW) (pp. 63–68). IEEE. https://doi.org/10.1109/W-FiCloud.2016.28
dc.relationDavis, A. M. (1993). Software Requirements: Objects, Functions and States. Prentice-Hall, Inc.
dc.relationDe, S., Carrez, F., Reetz, E., Tönjes, R., & Wang, W. (2013). Test-Enabled Architecture for IoT Service Creation and Provisioning. In The Future Internet Assembly (pp. 233–245). https://doi.org/10.1007/978-3-642-38082-2_20
dc.relationDeloitte. (2018). The cybersecurity talent shortage: An emerging challenge for consumer products companies
dc.relationDobre, C., Mavromoustakis, C. X., Garcia, N., Ivanova Goleva, R., & Mastorakis, G. (Eds.).( 2017). Glossary. In Ambient Assisted Living and Enhanced Living Environments (pp. xliii–xliv). Elsevier. https://doi.org/10.1016/B978-0-12-805195-5.00028-4
dc.relationDykstra, J. (2015). Essential Cybersecurity Science: Build, Test, and Evaluate Secure Systems (First Edit). O’Reilly Media.
dc.relationEdwards, S., & Profetis, I. (2016). Hajime: Analysis of a decentralized internet worm for IoT devices.
dc.relationElmaghraby, A. S., & Losavio, M. M. (2014). Cyber security challenges in Smart Cities: Safety, security and privacy. Journal of Advanced Research, 5(4), 491–497. https://doi.org/10.1016/j.jare.2014.02.006
dc.relationEmm, D., Unuchek, R., & Kruglov, K. (2016). Kaspersky Security Bulletin 2016. Review of the Year.
dc.relationEssery, Michael. (2016). Today 65% of Enterprises Already Using Internet of Things; Business Value found in Optimizing Operations and Reducing Risk.
dc.relationFernandes, J., Nati, M., Loumis, N. S., Nikoletseas, S., Raptis, T. P., Krco, S., … Ziegler, S. (2015). IoT Lab: Towards co-design and IoT solution testing using the crowd. In Recent Advances in Internet of Things (RIoT), 2015 International Conference on (pp. 1–6).
dc.relationFinkle, J. (2016). J&J warns diabetic patients: Insulin pump vulnerable to hacking. Reuters.
dc.relationFiutem, R., & Antoniol, G. (1998). Identifying design-code inconsistencies in object-oriented software: A case study. InS oftware Maintenance, 1998. Proceedings., International Conference on (pp. 94–102).
dc.relationFolmer, E., Van Gurp, J., & Bosch, J. (2004). Software architecture analysis of usability. In International Workshop on Design, Specification, and Verification of Interactive Systems (pp. 38–58).
dc.relationForeScout Technologies. (2016). IoT Enterprise Risk Report.
dc.relationFormisano, C., Pavia, D., Gurgen, L., Yonezawa, T., Galache, J. A., Doguchi, K., & Matranga, I. (2015). The advantages of IoT and cloud applied to smart cities. In Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on (pp. 325–332).
dc.relationForrester. (2017). Predictions 2018: IoT Moves From Experimentation To Business Scale.
dc.relationFowler, K. (2016). Cybersecurity. In Enterprise Risk Management (pp. 91–108). Elsevier. https://doi.org/10.1016/B978-0-12-800633-7.00007-9
dc.relationFox-Brewster, T. (2016). How Hacked Cameras Are Helping Launch The Biggest Attacks The Internet Has Ever Seen.F orbes.
dc.relationFundación Telefónica. (2016). Ciberseguridad, la protección de la información en un mundo digital. Fundación Telefónica, Editorial Ariel S.A.
dc.relationGartner Inc. (2015). Gartner Says 6.4 Billion Connected “Things” Will Be in Use in 2016, Up 30 Percent From 2015.
dc.relationGartner Inc. (2016a). Gartner’s 2016 Hype Cycle for Emerging Technologies Identifies Three Key Trends That Organizations Must Track to Gain Competitive Advantage. Retrieved from www.gartner.com/newsroom/id/3412017
dc.relationGartner Inc. (2016b). Gartner Says By 2020, More Than Half of Major New Business Processes and Systems Will Incorporate Some Element of the Internet of Things.
dc.relationGartner Inc. (2016c). Gartner Says Worldwide IoT Security Spending to Reach $348 Million in 2016.
dc.relationGartner Inc. (2016d). Top 10 Strategic Technology Trends for 2017.
dc.relationGe, M., & Kim, D. S. (2015). A framework for modeling and assessing security of the internet of things. InP arallel and Distributed Systems (ICPADS), 2015 IEEE 21st International Conference on (pp. 776–781).
dc.relationGibbs, S. (2015). Hackers can hijack Wi-Fi Hello Barbie to spy on your children. The Guardian.
dc.relationGilchrist, A. (2016). IIoT Reference Architecture. In Industry 4.0 (pp. 65–86). Springer.
dc.relationGluhak, A., Hauswirth, M., Krco, S., Stojanovic, N., Bauer, M., Nielsen, R. H., … Corcho, O. (2011). An Architectural Blueprint for a Real-World Internet. InF uture Internet Assembly (pp. 67–80).
dc.relationGluhak, A., Munoz, L., Sotres, P., Sanchez, L., Roux, P., Sanchez, B., … Hernandez, A. L. (2013). Third Cycle Architecture Specification.
dc.relationGokhale, S. S., & Trivedi, K. S. (2002). Reliability prediction and sensitivity analysis based on software architecture. InS oftware Reliability Engineering, 2002. ISSRE 2003. Proceedings. 13th International Symposium on (pp. 64-75).
dc.relationGómez Vargas, M., Galeano Higuita, C., & Jaramillo Muñoz, D. A. (2015). El estado del arte: una metodología de investigación.R evista Colombiana de Ciencias Sociales, 6(2), 423–442.
dc.relationGrant, M. J., & Booth, A. (2009). A typology of reviews: an analysis of 14 review types and associated methodologies.H ealth Information & Libraries Journal, 26(2), 91–108. https://doi.org/10.1111/j.1471-1842.2009.00848.x
dc.relationGreen, P. E. J. (2016). Introduction to Risk Management Principles. In Enterprise Risk Management (pp. 1–13). Elsevier. https://doi.org/10.1016/B978-0-12-800633- 7.00001-8
dc.relationGubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions.F uture Generation Computer Systems, 29(7), 1645–1660.
dc.relationGuo, B., Zhang, D., Wang, Z., Yu, Z., & Zhou, X. (2013). Opportunistic IoT: Exploring the harmonious interaction between human and the internet of things. Journal of Network and Computer Applications, 36(6), 1531–1539.
dc.relationHayashi, K. (2014). IoT Worm Used to Mine Cryptocurrency.
dc.relationHeer, T., Garcia-Morchon, O., Hummen, R., Keoh, S. L., Kumar, S. S., & Wehrle, K. (2011). Security Challenges in the IP-based Internet of Things.W ireless Personal Communications, 61(3), 527–542. https://doi.org/10.1007/s11277-011-0385-5
dc.relationHellaoui, H., Bouabdallah, A., & Koudil, M. (2016). TAS-IoT: Trust-Based Adaptive Security in the IoT. In Local Computer Networks (LCN), 2016 IEEE 41st Conference on (pp. 599–602).
dc.relationHerjavec Group. (2017). 2017 Cybersecurity Jobs Report.
dc.relationHernandez-Ramos, J. L., Pawlowski, M. P., Jara, A. J., Skarmeta, A. F., & Ladid, L. (2015). Toward a lightweight authentication and authorization framework for smart objects. IEEE Journal on Selected Areas in Communications, 33(4), 690–702.
dc.relationHernandez Sampieri, R., Fernández Collado, C., & Baptista Lucio, M. del P. (2010). Metodología de la investigación (Quinta edi). McGraw-Hill, Inc.
dc.relationHewlett Packard Enterprise. (2015). Internet Of things research study.
dc.relationHioureas, V. (2015, May). Does CCTV put the public at risk of cyberattack? Kaspersky Labs.
dc.relationHöller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014a). Architecture Reference Model. In From Machine-To-Machine to the Internet of Things (pp. 167–197). Elsevier. https://doi.org/10.1016/B978-0-12-407684-6.00007-3
dc.relationHöller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014b). IoT Architecture – State of the Art. In From Machine-To-Machine to the Internet of Things (pp. 145–165). Elsevier. https://doi.org/10.1016/B978-0-12-407684-6.00006-1
dc.relationHöller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014c). IoT Reference Architecture. In From Machine-To-Machine to the Internet of Things (pp. 199–223). Elsevier. https://doi.org/10.1016/B978-0-12-407684-6.00008-5
dc.relationHopkin, P. (2017). Fundamentals of Risk Management: Understanding, evaluating and implementing effective risk management
dc.relationHuang, X., Craig, P., Lin, H., & Yan, Z. (2015). SecIoT: a security framework for the Internet of Things. Security and Communication Networks, 9, 3083–3095. https://doi.org/10.1002/sec.1259
dc.relationHussein, N. H., & Khalid, A. (2016). A survey of Cloud Computing Security challenges and solutions.I nternational Journal of Computer Science and Information Security, 14(1), 52.
dc.relationHwang, H., & Park, Y. B. (2017). Safety - Critical Software Quality Improvement Using Requirement Analysis. In2 017 International Conference on Platform Technology and Service (PlatCon) (pp. 1–4). IEEE. https://doi.org/10.1109/PlatCon.2017.7883725
dc.relationIEEE. (1990). IEEE Standard Glossary of Software Engineering Terminology.
dc.relationIEEE Computer Society. (2014). Guide to the Software Engineering - Body of Knowledge. (P. Bourque & R. E. Fairley, Eds.), IEEE Computer Society (V3 ed.). https://doi.org/10.1234/12345678
dc.relationIntel. (2016). A Guide to the Internet of Things. How billion of online objects are making the web wiser.
dc.relationIntel Security, & CSIS. (2016). Hacking the Skills Shortage: A study of the international shortage in cybersecurity skills
dc.relationInternet of Things Guide. (2016). Glossary Term.
dc.relationIonita, M. T., Hammer, D., & Obbink, H. (2002). Scenario-Based Software Architecture Evaluation Methods: An Overview.T echnical University, 1–10.
dc.relationIorga, M., Feldman, L., Barton, R., Martin, M. J., Goren, N., & Mahmoudi, C. (2017). The NIST Definition of Fog Computing.
dc.relationIoT-A Project. (2016). Requirements — IOT-A: Internet of Things Architecture. Retrieved from http://www.iot-a.eu/public/requirements/copy_of_requirements
dc.relationISACA. (2013). A simple definition of cybersecurity.
dc.relationISACA. (2016a). 2016 Cybersecurity Skills Gap. Retrieved from https://isaca.org.ar/2016/12/07/cybersecurity-skills-gap/
dc.relationISACA. (2016b). Cybersecurity Fundamentals Glossary
dc.relationISACA. (2018). State of Cybersecurity Study: Security Budgets Increasing, But Qualified Cybertalent Remains Hard to Find. Retrieved May 31, 2018, from http://www.isaca.org/About-ISACA/Press-room/News-Releases/2018/Pages/State-of-Cybersecurity-Study-Security-Budgets-Increasing-But-Qualified-Cybertalent- Remains-Hard-to-Find.aspx
dc.relationISO/IEC/IEEE. (2010). ISO/IEC/IEEE 24765:2010 Systems and software engineering - Vocabulary.
dc.relationISO/IEC/IEEE. (2011). ISO/IEC/IEEE 42010:2011, Systems and software engineering — Architecture description.
dc.relationISO/IEC. (2012). ISO/IEC 27032:2012, Information technology -- Security techniques -- Guidelines for cybersecurity. Retrieved from https://www.iso.org/standard/44375.html
dc.relationISO/IEC. (2013). ISO/IEC 27001:2013, Information technology -- Security techniques -- Information security management systems -- Requirements.
dc.relationISO/IEC. (2015). ISO/IEC/IEEE 27017:2015, Information technology -- Security techniques -- Code of practice for information security controls based on ISO/IEC 27002 for cloud services.
dc.relationITU-T. (2012). Overview of the Internet of things. Series Y: Global information infrastructure, internet protocol aspects and next-generation networks - Frameworks and functional architecture models.
dc.relationITU-T. (2014a). F.748.0: Common requirements for Internet of things (IoT) applications.
dc.relationITU-T. (2014b). Y.2066: Common requirements of the Internet of things.
dc.relationJiménez, J. A., Russo, M., Krco, S., Bezanilla, R., Munoz, L., Galache, J. A., …K outsoubelias, M. (2012). Second Cycle Architecture Specification.
dc.relationJóźwiak, L. (2017a). Advanced mobile and wearable systems. Microprocessors and Microsystems, 50, 202–221. https://doi.org/10.1016/j.micpro.2017.03.008
dc.relationJóźwiak, L. (2017b). Advanced mobile and wearable systems. Microprocessors and Microsystems, 50, 202–221. https://doi.org/10.1016/j.micpro.2017.03.008
dc.relationKaspersky Lab. (2016). Kaspersky Security Bulletin 2016.
dc.relationKaspersky Labs. (2015a). Damage Control: The Cost of Security Breaches. It Security Risk Special Report Series.
dc.relationKaspersky Labs. (2015b). Global IT Security Risks Survey.
dc.relationKazman, R., Bass, L., Abowd, G., & Webb, M. (1994). SAAM: A method for analyzing the properties of software architectures. InS oftware Engineering, 1994. Proceedings. ICSE-16., 16th International Conference on (pp. 81–90).
dc.relationKazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., & Carriere, J. (1998).T he Architecture Tradeoff Analysis Method.
dc.relationKim, D., & Solomon, M. G. (2016). Fundamentals of Information Systems Security. Jones & Bartlett Learning. Retrieved from https://books.google.com.co/books? id=Yb4eDQAAQBAJ
dc.relationKitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering version 2.3.
dc.relationKotonya, G., & Sommerville, I. (1998). Requirements Engineering: Processes and Techniques (1st ed.). Wiley Publishing.
dc.relationKrco, S., Pokric, B., & Carrez, F. (2014). Designing IoT architecture (s): A European perspective. InI nternet of Things (WF-IoT), 2014 IEEE World Forum on (pp. 79–84).
dc.relationKrishnamurthy, S., & Mathur, A. P. (1997). On the estimation of reliability of a software system using reliabilities of its components. InS oftware Reliability Engineering, 1997. Proceedings., The Eighth International Symposium on (pp. 146–155).
dc.relationKubat, P. (1989). Assessing reliability of modular software. Operations Research Letters, 8(1), 35–41.
dc.relationLaprie, J.-C. (1984). Dependability evaluation of software systems in operation. IEEE Transactions on Software Engineering, (6), 701–714.
dc.relationLassing, N. H., Rijsenbrij, D. B. B., & van Vliet, H. (1999). On software architecture analysis of flexibility, complexity of changes: Size isn’t everything.
dc.relationLee, C., Zappaterra, L., Kwanghee Choi, & Hyeong-Ah Choi. (2014). Securing smart home: Technologies, security challenges, and security requirements. In2 014 IEEE Conference on Communications and Network Security (pp. 67–72). IEEE. https://doi.org/10.1109/CNS.2014.6997467
dc.relationLee, G. M., Crespi, N., Choi, J. K., & Boussard, M. (2013). Internet of things. InE volution of Telecommunication Services (pp. 257–282). Springer.
dc.relationLee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises.B usiness Horizons, 58(4), 431–440.
dc.relationLee, S., & Kim, S. (2013). Hacking, surveilling, and deceiving victims on Smart TV. Black Hat.
dc.relationLeyden, J. (2016). One Ring to pwn them all: IoT doorbell can reveal your Wi-Fi key. The Register.
dc.relationLi, S., Xu, L. Da, & Zhao, S. (2015). The internet of things: a survey. Information Systems Frontiers, 17(2), 243–259. https://doi.org/10.1007/s10796-014-9492-7
dc.relationLindvall, M., Tvedt, R. T., & Costa, P. (2003). An empirically-based process for software architecture evaluation. Empirical Software Engineering, 8(1), 83–108.
dc.relationLiu, L., Yin, L., Guo, Y., & Fang, B. (2014). EAC: a framework of authentication property for the IoTs. In Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 2014 International Conference on (pp. 102–105).
dc.relationLize, G., Jingpei, W., & Bin, S. (2014). Trust management mechanism for Internet of Things.C hina Communications, 11(2), 148–156.
dc.relationLloyd’s. (2017). Counting the cost Cyber exposure decoded.
dc.relationLloyd, W., & Connie, S. (2002). PASA: A Method for the Performance Assessment of Software Architectures. In Proceedings of the Third International Workshop on Software and Performance (WOSP’2002), July (pp. 24–26).
dc.relationLoucopoulus, P., & Karakostas, V. (1995). System Requirements Engineering. McGraw-Hill, Inc.
dc.relationMa, M., Wang, P., & Chu, C.-H. (2013). Data management for internet of things: challenges, approaches and opportunities. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing (pp. 1144– 1151).
dc.relationMahalank, S. N., Malagund, K. B., & Banakar, R. M. (2016). Non Functional Requirement Analysis in IoT based smart traffic management system. In 2016 International Conference on Computing Communication Control and automation (ICCUBEA) (pp. 1–6). IEEE. https://doi.org/10.1109/ICCUBEA.2016.7860147
dc.relationMahalle, P. N., Anggorojati, B., Prasad, N. R., & Prasad, R. (2013). Identity authentication and capability based access control (iacac) for the internet of things.J ournal of Cyber Security and Mobility, 1(4), 309--348.
dc.relationMalware Must Die. (2016). MMD-0058-2016 - Linux/NyaDrop - a linux MIPS IoT bad news.
dc.relationManrique, J. A., Rueda-Rueda, J. S., & Portocarrero, J. M. T. (2016). Contrasting Internet of Things and Wireless Sensor Network from a Conceptual Overview. In 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (pp. 252–257). IEEE. https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.66
dc.relationMaxwell, J. A. (2005). Conceptual framework: What do you think is going on. Qualitative Research Design: An Interactive Approach, 41, 33–63.
dc.relationMead, N. R., & Stehney, T. (2005). Security quality requirements engineering (SQUARE) methodology. ACM SIGSOFT Software Engineering Notes, 30(4), 1. https://doi.org/10.1145/1082983.1083214
dc.relationMell, P., & Grance, T. (2011). The NIST Definition of Cloud Computing.
dc.relationMicrosoft Colombia. (2016). Principales tendencias de seguridad en IoT.
dc.relationMiles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. sage.
dc.relationMiller, C., & Valasek, C. (2015). Remote Exploitation of an Unaltered Passenger Vehicle.
dc.relationMiorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad Hoc Networks, 10(7), 1497–1516.
dc.relationMiranda, J., Mäkitalo, N., Garcia-Alonso, J., Berrocal, J., Mikkonen, T., Canal, C., & Murillo, J. M. (2015).F rom the Internet of Things to the Internet of People.I EEE Internet Computing, 19(2), 40–47.
dc.relationMoher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
dc.relationMolter, G. (1999). Integrating SAAM in domain-centric and reuse-based development processes. In Proceedings of the 2nd Nordic Workshop on Software Architecture, Ronneby (pp. 1–10).
dc.relationMonteiro, C., Oliveira, M., Bastos, J., Ramrekha, T., & Rodriguez, J. (2014). Social Networks and Internet of Things, an Overview of the SITAC Project. In International Wireless Internet Conference (pp. 191–196).
dc.relationMoore, B. J. (1994). Achieving software quality through requirements analysis. InP roceedings of 1994 IEEE International Engineering Management Conference - IEMC ’94 (pp. 78–83). IEEE. https://doi.org/10.1109/IEMC.1994.379948
dc.relationMorán Delgado, G., & Alvarado Cervantes, D. G. (2010). Métodos de investigación (Primera ed). Pearson Education.
dc.relationMossburg, E., Gelinne, J., & Calzada, H. (2016). Beneath the surface of a cyberattack: A deeper look at business impacts.
dc.relationMostow, J. (1985). Towards Better Models of the Design Process. AI Magazine, 6(1), 44–57.
dc.relationMozzaquatro, B. A., Jardim-Goncalves, R., Melo, R., & Agostinho, C. (2016). The application of security adaptive framework for sensor in industrial systems. InS ensors Applications Symposium (SAS), 2016 IEEE (pp. 1–6).
dc.relationMuñoz, L., Sanchez, L., Galache, J. A., Gutierrez, V., Garcia, R., Poyato, P., … Ramdhany, R. (2011).F irst Cycle Architecture Specification.
dc.relationMurphy, G. C., Notkin, D., & Sullivan, K. (1995). Software reflexion models: Bridging the gap between source and high-level models.A CM SIGSOFT Software Engineering Notes, 20(4), 18–28.
dc.relationNakagawa, E. Y., Oquendo, F., & Becker, M. (2012). RAModel: A Reference Model for Reference Architectures. In Software Architecture (WICSA) and European Conference on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP Conference on (pp. 297–301). IEEE. https://doi.org/10.1109/WICSA-ECSA.212.49
dc.relationNamal, S., Gamaarachchi, H., MyoungLee, G., & Um, T.-W. (2015). Autonomic trust management in cloud-based and highly dynamic IoT applications. In ITU Kaleidoscope: Trust in the Information Society (K-2015), 2015 (pp. 1–8).
dc.relationNaur, P., & Randell, B. (1969). Software Engineering: Report of a conference sponsored by the NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968, Brussels, Scientific Affairs Division, NATO.
dc.relationNeisse, R., Fovino, I. N., Baldini, G., Stavroulaki, V., Vlacheas, P., & Giaffreda, R. (2014). A model-based security toolkit for the internet of things. InA vailability, Reliability and Security (ARES), 2014 Ninth International Conference on (pp. 78–87).
dc.relationNia, A. M., & Jha, N. K. (2016). A comprehensive study of security of internet-of-things. IEEE Transactions on Emerging Topics in Computing.
dc.relationNIST. (2011). ISO/IEC 25010:2011 - Systems and software engineering -- Systems and software Quality Requirements and Evaluation (SQuaRE) -- System and software quality models.
dc.relationNIST. (2013). Glossary of Key Information Security Terms.
dc.relationNowSecure. (2016). 2016 NowSecure Mobile Security Report.
dc.relationObject Management Group. (2005). Introducction to OMG’s Unified Modeling Language. Retrieved from http://www.uml.org/what-is-uml.htm
dc.relationObject Management Group. (2017). About the Unified Modeling Language Specification Versión 2.5.1. Retrieved from https://www.omg.org/spec/UML/About-UML/
dc.relationOficina Nacional de Seguridad. (2016). Normas de la Autoridad Nacional para la Protección de la Información Clasificada. Retrieved from http://www.buenjuicio.com/wpcontent/ uploads/2015/07/Normas_de_la_Autoridad_Nacional_para_la_Proteccion_de_la_Informacion_Clasificada.pdf
dc.relationOltski, J. (2017). The Life and Times of Cybersecurity Professionals.
dc.relationOWASP. (2016a). IoT Framework Assessment. Retrieved November 29, 2017, from https://www.owasp.org/index.php/IoT_Framework_Assessment
dc.relationOWASP. (2016b). Principles of IoT Security. Retrieved November 4, 2017, from https://www.owasp.org/index.php/Principles_of_IoT_Security
dc.relationOWASP. (2017a). About The Open Web Application Security Project. Retrieved from www.owasp.org/index.php/About_The_Open_Web_Application_Security_Project
dc.relationOWASP. (2017b). OWASP Internet of Things (IoT) Project.
dc.relationOWASP. (2017c). Password Storage Cheat Sheet. Retrieved November 29, 2017, from https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
dc.relationOwens, D. (2005). Documenting Software Architectures: Views and Beyond. Technical Communication, 52(1), 75–77.
dc.relationPacheco, J., & Hariri, S. (2016). IoT Security Framework for Smart Cyber Infrastructures. In Foundations and Applications of Self* Systems, IEEE International Workshops on (pp. 242–247).
dc.relationPacheco, J., Satam, S., Hariri, S., Grijalva, C., & Berkenbrock, H. (2016). IoT Security Development Framework for building trustworthy Smart car services. In Intelligence and Security Informatics (ISI), 2016 IEEE Conference on (pp. 237–242).
dc.relationPastrana, S., Rodriguez-Canseco, J., & Calleja, A. (n.d.). ArduWorm: A Functional Malware Targeting Arduino Devices.
dc.relationPatel, P., & Cassou, D. (2015). Enabling high-level application development for the internet of things. Journal of Systems and Software, 103, 62–84.
dc.relationPatiño, R. G. (2016). El estado del arte en la investigación: ¿Análisis de los conocimientos acumulados o indagación por nuevos sentidos?R evista Folios, 2(44).
dc.relationPawar, M. V, & Anuradha, J. (2015). Network Security and Types of Attacks in Network. Procedia Computer Science, 48, 503–506.
dc.relationPicco, G. Pietro. (2010). Software engineering and wireless sensor networks. In Proceedings of the FSE/SDP workshop on Future of software engineering research - FoSER ’10 (p. 283). New York, New York, USA: ACM Press. https://doi.org/10.1145/1882362.1882421
dc.relationPohl, K. (2010). Requirements Engineering: Fundamentals, Principles, and Techniques (1st Editio). Springer Publishing Company.
dc.relationPressman, R. S. (2010). Ingeniería del Software: un enfoque práctico (Séptima ed). The McGraw-Hill.
dc.relationRadomirovic, S. (2010). Towards a Model for Security and Privacy in the Internet of Things. InP roc. First Int’l Workshop on Security of the Internet of Things (p. 6).
dc.relationRatkowski, A. (2016). Architecture for Internet of Things Analytical Ecosystem. InD ependability Engineering and Complex Systems (pp. 385–393). Springer.
dc.relationRefsdal, A., Solhaug, B., & Stølen, K. (2015). Cyber-Risk Management. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-23570-7
dc.relationRiazul Islam, S. M., Daehan Kwak, Humaun Kabir, M., Hossain, M., & Kyung-Sup Kwak. (2015). The Internet of Things for Health Care: A Comprehensive Survey. IEEE Access, 3, 678–708. https://doi.org/10.1109/ACCESS.2015.2437951
dc.relationRobles, T., Alcarria, R., de Andrés, D. M., Navarro, M., Calero, R., Iglesias, S., & López, M. (2015). An IoT based reference architecture for smart water management processes. JoWUA, 6(1), 4–23.
dc.relationRoman, G.-C. (1985). A taxonomy of current issues in requirements engineering.I EEE Computer, 18(4), 14–23.
dc.relationRoss, E. (2016). Baby monitors “hacked”: Parents warned to be vigilant after voices heard coming from speakers. Independent.
dc.relationRoy, B., & Graham, N. (2008). Methods for Evaluating Software Architecture: A Survey. Ontario, Canada.
dc.relationRozanski, N., & Woods, E. (2005). Applying Viewpoints and Views to Software Architecture.
dc.relationRSA. (2016). 2016: Current State of Cybercrime.
dc.relationRueda R., J. S., & TalaveraP., J. M. (2017). Similitudes y diferencias entre Redes de Sensores Inalámbricas e Internet de las Cosas: Hacia una postura clarificadora Similarities and differences between Wireless Sensor Networks and the Internet of Things: Towards a clarifying position. Revista Colombiana de Computación, 18(2), 58–74. https://doi.org/10.29375/25392115.3218
dc.relationRuparelia, N. B. (2010). Software development lifecycle models. ACM SIGSOFT Software Engineering Notes, 35(3), 8–13. https://doi.org/10.1145/1764810.1764814
dc.relationSadeghi, A.-R., Wachsmann, C., & Waidner, M. (2015). Security and privacy challenges in industrial internet of things. InP roceedings of the 52nd Annual Design Automation Conference on - DAC ’15 (pp. 1–6). New York, New York, USA: ACM Press. https://doi.org/10.1145/2744769.2747942
dc.relationSanchez, L., Muñoz, L., Galache, J. A., Sotres, P., Santana, J. R., Gutierrez, V., … others. (2014). SmartSantander: IoT experimentation over a smart city testbed. Computer Networks, 61, 217–238.
dc.relationSanchez, S., Angel Sicilia, M., & Rodriguez, D. (2012). Ingeniería del Sofware. Un enfoque desde la guía SWEBOK. Alfaomega.
dc.relationSchauer, P., & Debita, G. (2015). Internet of Things Service Systems Architecture.
dc.relationSchrott, U. (2017). Austrian hotel experiences ‘ransomware of things attack.’
dc.relationSefika, M., Sane, A., & Campbell, R. H. (1996). Monitoring compliance of a software system with its high-level design models. InP roceedings of the 18th international conference on Software engineering (pp. 387–396).
dc.relationSeo, S., Kim, J., Yun, S., Huh, J., & Maeng, S. (2015). HePA: Hexagonal Platform Architecture for Smart Home Things. In Parallel and Distributed Systems (ICPADS), 2015 IEEE 21st International Conference on (pp. 181–189).
dc.relationSerbanati, A., Salinas Segura, A., Olivereau, A., Ben Saied, Y., Gruschka, N., Gessner, D., & Gomez-Marmol, F. (2012). Project Deliverable D4.2 - Concepts and Solutions for Privacy and Security in the Resolution Infrastructure.
dc.relationSerna, J., Morales, R., Medina, M., & Luna, J. (2014). Trustworthy communications in Vehicular Ad Hoc NETworks. In Internet of Things (WF-IoT), 2014 IEEE World Forum on (pp. 247–252).
dc.relationShaw, M. (1989). Larger Scale Systems Require Higher-Level Abstractions. ACM Sigsoft Software Engineering Notes, 14(3), 143–146.
dc.relationShen, S., & Carugi, M. (2014). Standardizing the Internet of Things in an evolutionary way. In ITU Kaleidoscope Academic Conference: Living in a converged world- Impossible without standards?, Proceedings of the 2014 (pp. 249–254).
dc.relationShirey, R. (2007). Internet Security Glossary, Version 2.
dc.relationShooman, M. L. (1976). Structural models for software reliability prediction. In Proceedings of the 2nd international conference on Software engineering (pp. 268–280).
dc.relationShrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. In Industrial Engineering and Engineering Management (IEEM), 2014 IEEE International Conference on (pp. 697–701).
dc.relationSicari, S., Rizzardi, A., Grieco, L. A., & Coen-Porisini, A. (2015). Security, privacy and trust in Internet of Things: The road ahead. Computer Networks, 76, 146–164.
dc.relationSingh, M., & Bhandari, P. (2016). Building a framework for network security situation awareness. In Computing for Sustainable Global Development (INDIACom), 2016 3rd International Conference on (pp. 2578–2583).
dc.relationSingh, S., & Singh, N. (2015). Internet of Things (IoT): Security challenges, business opportunities & reference architecture for E-commerce. In Green Computing and Internet of Things (ICGCIoT), 2015 International Conference on (pp. 1577–1581).
dc.relationSkala, K., Davidovic, D., Afgan, E., Sovic, I., & Sojat, Z. (2015). Scalable Distributed Computing Hierarchy: Cloud, Fog and Dew Computing.O pen Journal of Cloud Computing (OJCC), 2(1), 16–24.
dc.relationSmartex. (2016). Glossary of terms and expressions used in connection with The Internet of Things with a final section of related ‘Standards.’ Retrieved from http://www.smartex.com/wp-content/uploads/2016/04/Internet-of-Things-Glossary-of-Terms-V8-draft.pdf
dc.relationSmith, C. U. (1990). Performance engineering of software systems. Addison-Wesley Longman Publishing Co., Inc.
dc.relationSoftware Engineering Institute. (2016). Software Engineering Institute Glossary.
dc.relationSommerville, I. (2011). Ingeniería del Software. PEARSON.
dc.relationSommerville, I., & Sawyer, P. (1997). Requirements Engineering: A Good Practice Guide. John Wiley & Sons, Inc.
dc.relationSouza, R., & Cardozo, E. (2016). A Resource-Oriented Architecture for the Internet of Things (IoT). InC onnectivity Frameworks for Smart Devices (pp. 99–116). Springer.
dc.relationStatista. (2018). Number of Internet of Things (IoT) devices connected worldwide in 2017 and 2018, by type (in millions).
dc.relationStoermer, C., Bachmann, F., & Verhoef, C. (2003). SACAM: The software architecture comparison analysis method.
dc.relationStojmenovic, I., Wen, S., Huang, X., & Luan, H. (2015). An overview of Fog computing and its security issues. Concurrency and Computation: Practice and Experience.
dc.relationStoneburner, G., Goguen, A. Y., & Feringa, A. (2002). SP 800-30. risk management guide for information technology systems.
dc.relationStravoskoufos, K., Sotiriadis, S., & Petrakis, E. (2016). IoT-A and FIWARE: bridging the barriers between the cloud and IoT systems design and implementation. In Proc. 6th Int’l Conf. Cloud Computing and Services Science (pp. 146–153).
dc.relationSubramani, K. S., Antonopoulos, A., Nosratinia, A., & Makris, Y. (2016). Hardware-Induced Security & Privacy Vulnerabilities in the Internet of Things.
dc.relationSupriya, S., & Padaki, S. (2016). Data Security and Privacy Challenges in Adopting Solutions for IOT. In 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (pp. 410–415). IEEE. https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.97
dc.relationTahir, R., Tahir, H., McDonald-Maier, K., & Fernando, A. (2016). A novel ICMetric based framework for securing the Internet of Things. In Consumer Electronics (ICCE), 2016 IEEE International Conference on (pp. 469–470).
dc.relationTalavera Portocarrero, J. M. (2016). RAMSES: Reference Architectue of Self-Adaptative Middleware for Wireless Sensor Networks. Universidade Federal fo Rio de Janeiro.
dc.relationTechopedia. (2017). What is Modeling Language? Retrieved November 2, 2017, from https://www.techopedia.com/definition/20810/modeling-language
dc.relationTekinerdogan, B. (2004). ASAAM: Aspectual software architecture analysis method. In Software Architecture, 2004. WICSA 2004. Proceedings. Fourth Working IEEE/IFIP Conference on (pp. 5–14).
dc.relationThierer, A. D. (2014). The Internet of Things & Wearable Technology: Addressing Privacy & Security Concerns Without Derailing Innovation.S SRN Electronic Journal. https://doi.org/10.2139/ssrn.2494382
dc.relationTouhill, G. J., & Touhill, J. (2014). Cybersecurity for Executives: A Practical Guide. John Wiley & Sons, Inc.
dc.relationTownsend Security. (2016). Definitive Guide to Encryption Key Management Fundamentals. Retrieved from https://info.townsendsecurity.com/definitive-guide-to-encryptionkey- management-fundamentals
dc.relationTrend Micro. (2015). Trend Micro Glossary: Ransomware.
dc.relationTuck, M. (2016). Internet of Things: Are We There Yet? (The 2016 IoT Landscape) – Matt Turck. Retrieved July 2, 2017, from http://mattturck.com/2016-iot-landscape/
dc.relationTuck, M. (2018). Growing Pains: The 2018 Internet of Things Landscape. Retrieved from http://mattturck.com/iot2018/
dc.relationTvedt, R. T., Lindvall, M., & Costa, P. (2002). A process for software architecture evaluation using metrics. In Software Engineering Workshop, 2002. Proceedings. 27th Annual NASA Goddard/IEEE (pp. 191–196).
dc.relationUS-CERT. (2016). Alert (TA16-288A) Heightened DDoS Threat Posed by Mirai and Other Botnets.
dc.relationUsländer, T., & Epple, U. (2015). Reference model of industrie 4.0 service architectures. At-Automatisierungstechnik, 63(10), 858–866.
dc.relationVan Kranenburg, R. (2008). The Internet og Things. A critique of ambient technology and the all-seeing network of RFID. Amsterdam.
dc.relationVaquero, L. M., Rodero-Merino, L., Caceres, J., & Lindner, M. (2008). A break in the clouds: Towards a Cloud Definition. ACM SIGCOMM Computer Communication Review, 39(1), 50. https://doi.org/10.1145/1496091.1496100
dc.relationVerdouw, C. N., Robbemond, R. M., Verwaart, T., Wolfert, J., & Beulens, A. J. M. (2015). A reference architecture for IoT-based logistic information systems in agri-food supply chains. Enterprise Information Systems, 1–25.
dc.relationWeyrich, M., & Ebert, C. (2016). Reference architectures for the internet of things. IEEE Software, 33(1), 112–116.
dc.relationWilliams, L. G., & Smith, C. U. (1998). Performance Engineering of Software Architectures. InP roceeding on Workshop Software and Performance (pp. 164–177).
dc.relationWSO2. (2015). A Reference Architecture for the Internet of Things.
dc.relationXu, B., Zhang, D., & Yang, W. (2012). Research on architecture of the Internet of Things for grain monitoring in storage. InI nternet of Things (pp. 431–438). Springer.
dc.relationYacoub, S. M., Cukic, B., & Ammar, H. H. (1999). Scenario-based reliability analysis of component-based software. In Software Reliability Engineering, 1999. Proceedings. 10th International Symposium on (pp. 22–31).
dc.relationYamamoto, Y., Morris, R. V., Hartsough, C., & Callender, E. D. (1982). The role of requirements analysis in the system life cycle. In Proceedings of the June 7-10, 1982, national computer conference on - AFIPS ’82 (p. 381). New York, New York, USA: ACM Press. https://doi.org/10.1145/1500774.1500821
dc.relationYang, J., & Fang, B.-X. (2011). Security model and key technologies for the Internet of things. The Journal of China Universities of Posts and Telecommunications, 18(2), 109–112.
dc.relationYi, S., Li, C., & Li, Q. (2015). A Survey of Fog Computing: Concepts, Applications and Issues. In Mobidata ’15 Proceedings of the 2015 Workshop on Mobile Big Data (pp. 37–42). ACM. https://doi.org/10.1145/2757384.2757397
dc.relationYork Risk Services Group. (2015). No Business is too small for a cyber-attack.
dc.relationZegzhda, D., & Stepanova, T. (2015). Achieving Internet of Things security via providing topological sustainability. In Science and Information Conference (SAI), 2015 (pp. 269–276).
dc.relationZhang, K., Ni, J., Yang, K., Liang, X., Ren, J., & Shen, X. S. (2017). Security and Privacy in Smart City Applications: Challenges and Solutions. IEEE Communications Magazine, 55(1), 122–129. https://doi.org/10.1109/MCOM.2017.1600267CM
dc.relationZhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: state-of-the-art and research challenges. Journal of Internet Services and Applications, 1(1), 7–18. https://doi.org/10.1007/s13174-010-0007-6
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleFramework conceptual de ciberseguridad para aplicaciones de internet de las cosas


Este ítem pertenece a la siguiente institución