dc.contributorBecerra Bayona, Silvia Milena
dc.contributorSolarte David, Víctor Alfonso
dc.contributorBecerra Bayona, Silvia Milena [0001568861]
dc.contributorSolarte David, Víctor Alfonso [0001329391]
dc.contributorBecerra Bayona, Silvia Milena [5wr21EQAAAAJ&hl=es&oi=ao]
dc.contributorBecerra Bayona, Silvia Milena [0000-0002-4499-5885]
dc.contributorSolarte David, Víctor Alfonso [0000-0002-9856-1484]
dc.contributorBecerra Bayona, Silvia Milena [Silvia-Becerra-Bayona]
dc.contributorSolarte David, Víctor Alfonso [Victor-Solarte-David]
dc.creatorMateus Suárez, Sofia Valentina
dc.creatorTorres Pinzón, Michelle María
dc.date.accessioned2021-08-12T13:53:24Z
dc.date.available2021-08-12T13:53:24Z
dc.date.created2021-08-12T13:53:24Z
dc.date.issued2021
dc.identifierhttp://hdl.handle.net/20.500.12749/13790
dc.identifierinstname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifierreponame:Repositorio Institucional UNAB
dc.identifierrepourl:https://repository.unab.edu.co
dc.description.abstractLas úlceras crónicas de pie diabético (UCPD) son una problemática que afecta la integridad de la piel, la cual necesita de una matriz extracelular (andamio) y biomoléculas para lograr el proceso cicatrización. Las biomoléculas inmersas en el plasma rico en plaquetas (PRP), incluyen factores de crecimiento que contribuyen a la regeneración de tejidos, por lo que se propuso el diseño de una tinta de biomaterial de polietilenglicol diacrilato (PEGDA) y PRP para potenciales aplicaciones en el desarrollo de apósitos personalizados, como tratamiento alternativo para promover la cicatrización de UCPD. El estudio planteo la búsqueda de un material viscoso (ThA) para aumentar la imprimibilidad del polímero, la inmovilización del PRP en la tinta de PEGDA al 10, 20 y 30% p/v, y ThA, y la evaluación de la imprimibilidad al variar los parámetros de flujo (150, 250 y 350%) y velocidad de extrusión (2 y 5 mm/s). Por lo anterior, se empleó gelatina para permitir la impresión de la mezcla, y utilizarla como una matriz de sacrificio que fuera liberada de la estructura. Así mismo se obtuvieron tintas de biomaterial con una óptima imprimibilidad según la fidelidad en la morfología y dimensiones diseñadas, con una formación de filamentos continuos. Posteriormente, se determinó que el PRP no es apto para la extrusión de un filamento y no permite la obtención de una solución homogénea al ser mezclado con la tinta de biomaterial, por lo que, basado en nuestro criterio, no puede ser utilizado para impresión. Con base en lo anterior, se establece que la tinta tiene potencial de ser usada para la inmovilización de biomoléculas y mejorar el tratamiento de las UCPD, al permitir la fabricación de andamios personalizados.
dc.languagespa
dc.publisherUniversidad Autónoma de Bucaramanga UNAB
dc.publisherFacultad Ingeniería
dc.publisherPregrado Ingeniería Biomédica
dc.relationAlavi , A., Sibbald, R., Mayer, D., Goodman, L., Botros, M., Armstrong, D., . . . Kirsner, R. (2014). Diabetic foot ulcers: Part I. Pathophysiology and prevention. Journal of the American Academy of Dermatology. doi:10.1016/j.jaad.2013.06.055
dc.relationAlexiadou, K., & Doupis, J. (2012). Management of Diabetic Foot Ulcers. Diabetes therapy : research, treatment and education of diabetes and related disorders. doi:10.1007/s13300012-0004-9
dc.relationAmable, P. R., Carias, R. B., Teixeira, M. V., da Cruz Pacheco, I., Corrêa do Amaral, R. J., Granjeiro, J. M., & Borojevic, R. (2013). Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem cell research & therapy. doi:10.1186/scrt218
dc.relationArmstrong, D., Boulton , A., & Bus, S. (2017). Diabetic Foot Ulcers and Their Recurrence. The New England journal of medicine. doi:10.1056/NEJMra1615439
dc.relationBahney, C. S., Lujan, T. J., Hsu, C. W., Bottlang, M., West, J. L., & Johnstone, B. (2011). Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogel. European cells & materials. doi:10.22203/ecm.v022a04
dc.relationCarr, M. E., & Carr, S. L. (1995). Fibrin structure and concentration alter clot elastic modulus but do not alter platelet mediated force development. Blood Coagulation & Fibrinolysis. doi:10.1097/00001721-199502000-00013
dc.relationChung, J., Naficy, S., Yue, Z., Kapsa, R., Quigley, A., Moulton, S. E., & Wallace, G. G. (2013). Bio-ink properties and printability for extrusion printing living cells. Biomaterials science. doi:10.1039/c3bm00012e
dc.relationConde-Montero, E., de la Cueva Dobao, P., & Martínez González, J. (2017). Platelet-rich plasma for the treatment of chronic wounds: evidence to date. Chronic Wound Care Management and Research. doi:https://doi.org/10.2147/CWCMR.S118655
dc.relationDeuel, T. F., & Chang, Y. (2014). Growth factors. In R. Lanza, R. Langer, & J. Vacanti, Principles of Tissue Engineering (pp. 291 - 308). doi:10.1016/b978-0-12-3983589.00016-1
dc.relationFrost, B. A., Sutliff, B. P., Thayer, P., Bortner, M. J., & Foster, E. J. (2019). Gradient poly (ethylene glycol) diacrylate and cellulose nanocrystals tissue engineering composite scaffolds via extrusion bioprinting. Frontiers in bioengineering and biotechnology. Frontiers in bioengineering and biotechnology. doi:10.3389/fbioe.2019.00280
dc.relationGame, F., Apelqvist, J., Attinger, C., Hartemann, A., Hinchliffe, R., Löndahl, M., . . . Jeffcoate, W. (2016). Effectiveness of interventions to enhance healing of chronic ulcers of the foot in diabetes: a systematic review. Diabetes/metabolism research and reviews. Retrieved from https://pubmed.ncbi.nlm.nih.gov/26344936/
dc.relationGao, X., Gao, L., Groth, T., Liu, T., He, D., Wang, M., . . . Zhao, M. (2019). Fabrication and properties of an injectable sodium alginate/PRP composite hydrogel as a potential cell carrier for cartilage repair. Journal of biomedical materials research. Part A. doi:10.1002/jbm.a.36720
dc.relationGroll, J., Boland, T., Blunk, T., Burdick, J. A., Cho, D. W., Dalton, P. D., & Malda, J. (2016). Biofabrication: reappraising the definition of an evolving field. Biofabrication. Retrieved from https://iopscience.iop.org/article/10.1088/1758-5090/8/1/013001
dc.relationGroll, J., Burdick, J., Cho, D.-W., Derby, B., Gelinsky, M., Heilshorn, S., . . . Woodfield, T. (2018). A definition of bioinks and their distinction from biomaterial inks. Biofabrication. doi:10.1088/1758-5090/aaec52
dc.relationGungor-Ozkerim, P., Inci, I., Zhang, Y., Khademhosseini, A., & Dokmeci, M. (2018). Bioinks for 3D bioprinting: an overview. Biomaterials science. doi:10.1039/c7bm00765e
dc.relationHe, Y., Yang, F., Zhao, H., Gao, Q., Xia, B., & Fu , J. (2016). Research on the printability of hydrogels in 3D bioprinting. Scientific reports. doi:10.1038/srep29977
dc.relationHicks, C., Canner , J., Mathioudakis, N., Lippincott , C., Sherman, R., & Abularrage, C. (2020). Incidence and Risk Factors Associated With Ulcer Recurrence Among Patients With Diabetic Foot Ulcers Treated in a Multidisciplinary Setting. The Journal of surgical research. doi:10.1016/j.jss.2019.09.025
dc.relationHong, N., Yang, G.-H., Lee , J., & Kim , G. (2017). 3D bioprinting and its in vivo applications. Journal of biomedical materials research. Part B, Applied biomaterials. Retrieved from https://pubmed.ncbi.nlm.nih.gov/28106947/
dc.relationHuber, S. C., Junior, J., Silva, L. Q., Montalvão, S., & Annichino-Bizzacchi, J. M. (2019). Freeze-dried versus fresh platelet-rich plasma in acute wound healing of an animal model. Regenerative medicine. doi:https://doi.org/10.2217/rme-2018-0119
dc.relationInternational Diabetes Federation. (2019). IDF Diabetes Atlas (9th ed.). Brussels, Belgium. Retrieved from https://www.diabetesatlas.org/en/
dc.relationJain, E., Chinzei, N., Blanco, A., Case, N., Sandell, L., Sell, S., . . . Zustiak, S. (2019). PlateletRich Plasma Released From Polyethylene Glycol Hydrogels Exerts Beneficial Effects on Human Chondrocytes. Journal of orthopaedic research: official publication of the Orthopaedic Research Society. doi:10.1002/jor.24404
dc.relationJain, E., Sheth, S., Dunn, A., Zustiak, S., & Sell, S. (2017). Sustained release of multicomponent platelet-rich plasma proteins from hydrolytically degradable PEG hydrogels. Journal of biomedical materials research. Part A. Retrieved from https://pubmed.ncbi.nlm.nih.gov/28865187/
dc.relationJo, C. H., Roh, Y. H., Kim, J. E., Shin, S., & Yoon, K. S. (2013). Optimizing Platelet-Rich Plasma Gel Formation by Varying Time and Gravitational Forces During Centrifugation. Journal of Oral Implantology. doi:10.1563/AAID-JOI-D-10-00155
dc.relationJoas, S., Tovar, G., Celik, O., Bonten, C., & Southan, A. (2018). Extrusion-Based 3D Printing of Poly(ethylene glycol) Diacrylate Hydrogels Containing Positively and Negatively Charged Groups. Gels (Basel, Switzerland). doi:https://doi.org/10.3390/gels4030069
dc.relationLi, H., Ma, T., Zhang, M., Zhu, J., Liu, J., & Tan, F. (2018). Fabrication of sulphonated poly(ethylene glycol)-diacrylate hydrogel as a bone grafting scaffold. Journal of materials science. Materials in medicine. doi:10.1007/s10856-018-6199-1
dc.relationLi, Z., Zhang, X., Yuan, T., Zhang, Y., Luo, C., Zhang, J., . . . Fan, W. (2020). Addition of Platelet-Rich Plasma to Silk Fibroin Hydrogel Bioprinting for Cartilage Regeneration. Tissue engineering. Part A. doi:10.1089/ten.TEA.2019.0304
dc.relationLiang, J., Guo, Z., Timmerman, A., Grijpma, D., & Poot, A. (2018). Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks. Biomedical Materials. Retrieved from https://iopscience.iop.org/article/10.1088/1748-605X/aaf31b/meta
dc.relationLuo, Y., Engelmayr, G., Auguste, D., Ferreira, L., Karp, J., Saigal, R., & Langer, R. (2014). 3D Scaffolds. In R. Lanza, R. Langer, & J. Vacanti, Principles of Tissue Engineering (4 ed., pp. 475 - 494). doi:https://doi.org/10.1016/B978-0-12-398358-9.00024-0
dc.relationMaione, A., Smith , A., Kashpur, O., Yanez, V., Knight, E., Mooney, D., . . . Garlick, J. (2016). Altered ECM deposition by diabetic foot ulcer-derived fibroblasts implicates fibronectin in chronic wound repair. Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society. Retrieved from https://pubmed.ncbi.nlm.nih.gov/27102877/
dc.relationMarinel.lo Roura, J., & Verdú Soriano, J. (2018). Conferencia nacional de consenso sobre las úlceras de la extremidad inferior (C.O.N.U.E.I.) (2da Edición ed.). Madrid, Ergon, España. Retrieved from https://gneaupp.info/wpcontent/uploads/2018/04/CONUEIX2018.pdf
dc.relationMazzucco, L., Balbo, V., Cattana, E., & Borzini, P. (2008). Platelet-rich plasma and platelet gel preparation using Plateltex®. Vox sanguinis. doi:10.1111/j.1423-0410.2007.01027.x
dc.relationMehta, S., & Watson, J. (2008). Platelet rich concentrate: basic science and current clinical applications. Journal of orthopaedic trauma. doi:10.1097/BOT.0b013e31817e793f
dc.relationMiraftab, M., Smart, G., Kennedy, J. F., Knill, C. J., Mistry, J., & Groocock, M. R. (2006). Novel chitosan-alginate fibres for advanced wound dressings. Medical Textiles and Biomaterials for Healthcare. doi:10.1533/9781845694104.1.3
dc.relationMouser, V., Melchels, F., Visser, J., Dhert, W., Gawlitta, D., & Malda, J. (2016). Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting. Biofabrication. doi:10.1088/1758-5090/8/3/035003
dc.relationMurray, M. M., Spindler, K. P., Abreu, E., Muller, J. A., Nedder, A., Kelly, M., . . . Connolly, S. A. (2007). Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. doi:10.1002/jor.20282
dc.relationNaghieh, S., & Chen, D. (2021). Printability – a Key Issue in Extrusion-based Bioprinting. Journal of Pharmaceutical Analysis. doi:https://doi.org/10.1016/j.jpha.2021.02.001
dc.relationNaghieh, S., Sarker, M., Sharma, N., Barhoumi, Z., & Chen, X. (2020). Printability of 3D Printed Hydrogel Scaffolds: Influence of Hydrogel Composition and Printing Parameters. Applied Sciences. doi:https://doi.org/10.3390/app10010292
dc.relationNemir, S., Hayenga, H. N., & West, J. L. (2010). PEGDA Hydrogels With Patterned Elasticity: Novel Tools for the Study of Cell Response to Substrate Rigidity. Biotechnology and bioengineering. doi:10.1002/bit.22574
dc.relationOrtiz-Vargas, I., García-Campos, M. L., Beltrán-Campos, V., Gallardo-López, F., SánchezEspinosa, A., & Montalvo, M. E. (2017). Cura húmeda de úlceras por presión. Atención en el ámbito domiciliar. Enfermería universitaria. doi:14(4), 243-250
dc.relationOuyang, L., Armstrong, J., Lin, Y., Wojciechowski, J. P., Lee-Reeves, C., Hachim, D., . . . Stevens, M. M. (2020). Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Science advances. doi:10.1126/sciadv.abc5529
dc.relationOuyang, L., Highley, C. B., Sun, W., & Burdick, J. A. (2017). A Generalizable Strategy for the 3D Bioprinting of Hydrogels from Nonviscous Photo-crosslinkable Inks. Advanced materials (Deerfield Beach, Fla.). Retrieved from https://pubmed.ncbi.nlm.nih.gov/27982464
dc.relationOuyang, L., Yao, R., Zhao, Y., & Sun, W. (2016). Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. doi:10.1088/1758-5090/8/3/035020
dc.relationPan, L., Yong, Z., Yuk, K. S., Hoon, K. Y., Yuedong, S., & Xu, J. (2016). Growth Factor Release from Lyophilized Porcine Platelet-Rich Plasma: Quantitative Analysis and Implications for Clinical Applications. Aesthetic plastic surgery. doi:https://doi.org/10.1007/s00266015-0580-y
dc.relationPang, L., Wang, Y., Zheng, M., Wang, Q., Lin, H., Zhang, L., & Wu, L. (2016). Transcriptomic study of high-glucose effects on human skin fibroblast cells. Molecular medicine reports. doi:https://doi.org/10.3892/mmr.2016.4822
dc.relationPaxton, N., Smolan, W., Böck, T., Melchels, F., Groll, J., & Jungst, T. (2017). Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication. doi:10.1088/1758-5090/aa8dd8
dc.relationPeters, E., Christoforou , N., Leong, K., Truskey , G., & West, J. (2016). Poly(ethylene glycol) Hydrogel Scaffolds Containing Cell-Adhesive and Protease-Sensitive Peptides Support Microvessel Formation by Endothelial Progenitor Cells. Cellular and molecular bioengineering. doi:10.1007/s12195-015-0423-6
dc.relationPop, M. A., & Almquist, B. D. (2017). Biomaterials: A potential pathway to healing chronic wounds? Experimental dermatology. Retrieved from https://pubmed.ncbi.nlm.nih.gov/28094868
dc.relationQi , M., Zhou, Q., Zeng, W., Wu, L., Zhao, S., Chen, W., . . . Tang , C.-E. (2018). Growth factors in the pathogenesis of diabetic foot ulcers. Frontiers in bioscience (Landmark edition). doi:10.2741/4593
dc.relationQiu, M., Chen, D., Shen, C., Shen, J., Zhao, H., & He, Y. (2016). Platelet-Rich Plasma-Loaded Poly(d,l-lactide)-Poly(ethylene glycol)-Poly(d,l-lactide) Hydrogel Dressing Promotes Full-Thickness Skin Wound Healing in a Rodent Model. International journal of molecular sciences. doi:10.3390/ijms17071001
dc.relationRanganathan, N., Joseph Bensingh, R., Abdul Kader, M., & Nayak, S. (2018). Synthesis and Properties of Hydrogels Prepared by Various Polymerization Reaction Systems. In Polymers and Polymeric Composites: A Reference Series. Springer, Cham. doi:https://doi.org/10.1007/978-3-319-76573-0_18-1
dc.relationRodríguez Flor, J., Palomar Gallego, M., & García-Denche, J. (2012). Plasma rico en plaquetas: fundamentos biológicos y aplicaciones en cirugía maxilofacial y estética facial. Revista Española de cirugía oral y maxilofacial. doi:https://doi.org/10.1016/j.maxilo.2011.10.007
dc.relationRutz, A. L., Hyland, K. E., Jakus, A. E., Burghardt, W. R., & Shah, R. N. (2015). A Multimaterial Bioink Method for 3D Printing Tunable, Cell-Compatible Hydrogels. Advanced Materials. doi:https://doi.org/10.1002/adma.201405076
dc.relationSadeghi-Ataabadi, M., Mostafavi-pou, Z., Vojdani, Z., Sani, M., Latifi, M., & Talaei-Khozan, T. (2016). Fabrication and charaterization of platelet-rich plasma scaffolds for tissue engineering application. Materials Science & Engineering C. doi:10.1016/j.msec.2016.10.001
dc.relationSamberg, M., Stone II, R., Natesan, S., Kowalczewski, A., Becerra, S., Wrice, N., & Christy, R. (2019). Platelet rich plasma hydrogels promote in vitro and in vivo angiogenic potential of adipose-derived stem cells. Acta biomaterialia. doi:10.1016/j.actbio.2019.01.039
dc.relationSamberg, M., Stone, R. 2., Kowalczewski, A., Becerra, S., Wrice, N., Cap, A., & Christy, R. (2019). Platelet rich plasma hydrogels promote in vitro and in vivo angiogenic potential of adipose-derived stem cells. Acta biomaterialia. doi:10.1016/j.actbio.2019.01.039
dc.relationSomasekharan, L. T., Kasoju, N., Raju, R., & Bhatt, A. (2020). Formulation and Characterization of Alginate Dialdehyde, Gelatin, and Platelet-Rich Plasma-Based Bioink for Bioprinting Applications. Bioengineering (Basel, Switzerland). doi:10.3390/bioengineering7030108
dc.relationTan, C. T., Liang, K., Ngo, Z. H., Dube, C. T., & Lim, C. Y. (2020). Application of 3D Bioprinting Technologies to the Management and Treatment of Diabetic Foot Ulcers. Biomedicines. doi:https://doi.org/10.3390/biomedicines8100441
dc.relationTan, C. T., Liang, K., Ngo, Z. H., Dube, C. T., & Lim, C. Y. (2020). Application of 3D Bioprinting Technologies to the Management and Treatment of Diabetic Foot Ulcers. Biomedicines, 8. doi:https://doi.org/10.3390/biomedicines8100441
dc.relationTan, F., Xu, X., Deng, T., Yin, M., Zhang, X., & Wang, J. (2012). Fabrication of positively charged poly(ethylene glycol)-diacrylate hydrogel as a bone tissue engineering scaffold. Biomedical materials. doi:https://doi.org/10.1088/1748-6041/7/5/055009
dc.relationUccioli, L., Izzo, V., Meloni, M., Vainieri, E., Ruotolo, V., & Giurato, L. (2015). Non-healing foot ulcers in diabetic patients: general and local interfering conditions and management options with advanced wound dressings. Journal of wound care. doi:10.12968/jowc.2015.24.Sup4b.35
dc.relationWilliams, D., Thayer, P., Martinez, H., Gatenholm, E., & Khademhosseini, A. (2018). A Perspective on the Physical, Mechanical and Biological Specifications of Bioinks and the Development of Functional Tissues in 3D Bioprinting. Bioprinting. doi:https://doi.org/10.1016/j.bprint.2018.02.003
dc.relationYang , J., Olanrele, O., Zhang, X., & Hsu, C. (2018). Fabrication of Hydrogel Materials for Biomedical Applications. Advances in experimental medicine and biology. doi:10.1007/978-981-13-0947-2_12
dc.relationZhang, B., Cristescu, R., Chrisey, D., & Narayan, R. (2020). Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds. International journal of bioprinting. doi:10.18063/ijb.v6i1.211
dc.relationZhang, X., Yang, D., & Nie, J. (2008). Chitosan/polyethylene glycol diacrylate films as potential. International journal of biological macromolecules
dc.relationZhang, Z., Jin, Y., Yin, J., Xu, C., Xiong, R., Christensen, K., . . . Ringeisen, B. (2018). Evaluation of bioink printability for bioprinting applications. Applied Physics Reviews. doi:https://doi.org/10.1063/1.5053979
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleDiseño de una tinta de biomaterial a base de pegda y plasma rico en plaquetas para potenciales aplicaciones en el desarrollo de apósitos personalizados para úlceras crónicas de pie diabético


Este ítem pertenece a la siguiente institución