dc.contributorRosero Pahi, Mario Alberto
dc.contributorRosero Pahi, Mario Alberto [0001356760]
dc.contributorRosero Pahi, Mario Alberto [lmqwzwUAAAAJ&hl=en]
dc.contributorRosero Pahi, Mario Alberto [0000-0002-9546-4064]
dc.contributorRosero Pahi, Mario Alberto [Mario-Alberto-Rosero-Pahi]
dc.contributorGrupo de Investigación en Violencia, Lenguaje y Estudios Culturales
dc.creatorHerrera Chaves, Daniela
dc.creatorMateus Vélez, Sandra
dc.date.accessioned2020-06-26T16:15:06Z
dc.date.available2020-06-26T16:15:06Z
dc.date.created2020-06-26T16:15:06Z
dc.date.issued2017-05-17
dc.identifierhttp://hdl.handle.net/20.500.12749/364
dc.identifierinstname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifierreponame:Repositorio Institucional UNAB
dc.description.abstractLas escenas visuales son complejas y sobrecargadas de información pero, aún así, contienen elementos invariables que se mantienen a través del tiempo. El contextual cueing paradigm demuestra la existencia de una forma implícita de memoria para el contexto visual que guía la atención a los aspectos más relevantes de una escena, optimizando así la búsqueda visual. Varios estudios han encontrado un sesgo hacia el hemisferio derecho en la atención visuoespacial, pero los resultados han sido menos concluyentes en lo referente a las diferencias hemisféricas en el contextual cueing. Debido a que la atención visuoespacial es un mecanismo crucial en el contextual cuieng task, hipotetizamos que el desempeño en esta tarea sería superior cuando los estímulos fueran presentados en el hemicampo izquierdo. Siendo así, comparamos el desempeño en la tarea dependiendo de la ubicación visuoespacial de los estímulos (hemicampo visual izquierdo o derecho) y no encontramos diferencias significativas entre hemicampos. Estos resultados pueden deberse a diferencias individuales entre sujetos y a que en el contextual cueing participan la atención dirigida por objetivos y la atención dirigida por estímulos, las cuales tienen diferentes patrones de lateralización en el cerebro.
dc.languagespa
dc.publisherUniversidad Autónoma de Bucaramanga UNAB
dc.publisherFacultad Ciencias de la Salud
dc.publisherPregrado Psicología
dc.relationHerrera Chaves, Daniela, Mateus Vélez, Sandra (2017). Visual hemifield differences in contextual cueing performance. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB
dc.relationBecker, E. & Karnath, H., (2007). Incidence of visual extinction after left versus right hemisphere stroke. Stroke, 38(12), 3172-3174. doi: 10.1161/STROKEAHA.107.489096
dc.relationBertels, J., Boursain, E., Destrebecqz, A. & Gaillard, V. (2015). Visual statistical learning in children and young adults: How implicit? Frontiers in Psychology, 5(1541), 111. doi: 10.3389/fpsyg.2014.01541
dc.relationBuckner, A. & Wippich, W. (1998). Differences and commonalities between implicit learning and implicit memory. In Stadler, M.A. & Frensch, P.A., (Eds.) Handbook of implicit learning (pp. 3-46). Thousand Oaks, CA, US: Sage Publications, Inc.
dc.relationCai, Q., Van der Haegen, L. & Brysbaert, M. (2013). Complementary hemispheric specialization for language production and visuospatial attention. Proceedings of the National Academy of Science, 110(4), E322–E330. doi: 10.1073/pnas.1212956110
dc.relationChokron, S., Brickman, A.M., Wei, T. & Buchsbaum, M.S. (2000). Hemispheric asymmetry for selective attention. Cognitive Brain Research, 9, 85-90. doi: http://doi.org/10.1016/S0006-8993(99)02169-1
dc.relationChun, M.M. (2000). Contextual cueing of visual attention. Trends in Cognitive Sciences, 4(5), 170-177. doi: http://dx.doi.org/10.1016/S1364-6613(00)01476-5
dc.relationChun, M.M. & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28–71. doi: http://doi.org/10.1006/cogp.1998.0681
dc.relationChun, M.M. & Nakayama, K. (2000). On the functional role of implicit visual memory for the adaptive deployment of attention across scenes. Visual Cognition, 7, 65-81. doi: http://dx.doi.org/10.1080/135062800394685
dc.relationChun, M.M. & Phelps, E.A. (1999). Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature America, 2(9), 844-847. doi: 10.1038/12222
dc.relationCleeremans, A., Destrebecqz, A. & Boyer, M. (1998). Implicit learning: News from the front. Trends in Cognitive Sciences, 2(10), 406-416. doi: http://doi.org/10.1016/S1364-6613(98)01232-7
dc.relationCorbetta, M. & Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201-215. doi: 10.1038/nrn755
dc.relationCorbetta, M. & Shulman, G.L. (2011). Spatial neglect and attention networks. Annual Review of Neuroscience, 34, 569-599. doi: 10.1146/annurev-neuro-061010-113731
dc.relationGotts, S.J., Joon Jo, H., Wallace, G.L., Saad., Z.S., Cox, R.W. & Martin, A. (2013). Two distinct forms of functional lateralization in the human brain. Proceedings of the National Academy of Science, 110(36), E3435–E3444. doi: 10.1073/pnas.1302581110
dc.relationGoujon, A., Didierjean, A. & Thorpe, S. (2015). Investigating implicit statistical learning mechanisms through contextual cueing. Trends in Cognitive Sciences, 19(9), 524-533. doi: http://dx.doi.org/10.1016/j.tics.2015.07.0
dc.relationGreene, A.J., Gross, W.L., Elsinger, C.L., & Rao, S.M. (2007). Hippocampal differentiation without recognition: An fMRI analysis of the contextual cueing task. Learning & Memory, 14, 548-553. Retrieved from: http://www.learnmem.org/cgi/doi/10.1101/lm.609807
dc.relationGoldstein, E.B. (2008). Cognitive Psychology (2nd ed.). Belmont, CA: Wadsworth Cengage Learning.
dc.relationGüntürkün, O. & Ocklenburg, S. (2017). Ontogenesis of lateralization. Neuron, 94, 249-263. doi: http://dx.doi.org/10.1016/j.neuron.2017.02.045
dc.relationHellige, J.B., Laeng, B. & Michimata, C. (2010). Processing asymmetries in the visual system. In Hughdal, K. & Westerhausen, R. (Eds.), The two halves of the brain: Information processing in the cerebral hemispheres (pp. 379-416). Cambridge, MA: The MIT Press
dc.relationHopkins, W.D. (2007). Hemispheric specialization in chimpanzees: Evolution of hand and brain. In Platek, S.M.,
dc.relationKeenan, J.P. & Shackelford, T.K. (Eds.), Evolutionary Cognitive Neuroscience. (pp. 95-119). Cambridge, MA: The MIT Press
dc.relationHutchinson, J.B. & Turk-Browne, N.B. (2012). Memory-guided attention: control from multiple memory systems. Trends in Cognitive Sciences, 16(12), 576-579. doi: 10.1016/j.tics.2012.10.003
dc.relationJanacsek, K., Ambrus, G.G., Paulus, W., Antal, A. & Nemeth, D. (2015). Right Hemisphere Advantage in Statistical Learning: Evidence From a Probabilistic Sequence Learning Task. Brain Stimulation, 8, 277-282. doi: http://dx.doi.org/10.1016/j.brs.2014.11.008
dc.relationKingstone, A.K., Enns, J.T., Mangun, G.R. & Gazzaniga, M.S. (1995). Guided visual search is a left-hemisphere process in split-brain patients. Psychological Science, 6(2), 118121. doi: 10.1111/j.1467-9280.1995.tb00317.x
dc.relationKolb, B. & Wishaw, I.Q. (2003). Fundamentals of Human Neuropsychology (5th ed.). New York, NY: W.H. Freeman.
dc.relationKornrumpf, B., Dimigen, O. & Sommer, W. (2017). Lateralization of posterior alpha EEG reflects the distribution of spatial attention during saccadic Reading. Psychophysiology, doi: 10.1111/psyp.12849
dc.relationKosslyn, S.M., Chabris, C.F. & Laeng, B. Asymmetries in encoding spatial relations. In Davidson, R. & Hugdahl, K. (Eds.), The asymmetrical brain (pp. 303-339). Cambridge, MA: The MIT Press.
dc.relationKrogh, L., Vlach, H.A., Johnson, S.P. (2013). Statistical learning across development: flexible yet constrained. Frontiers in Psychology, 3(598), 1- 11. doi: 10.3389/fpsyg.2012.00598
dc.relationLaeng , B. (1994). Lateralization of categorical and coordinate spatial functions: A study of unilateral stroke patients. Journal of Cognitive Neuroscience, 6, 189–203. doi: 10.1162/jocn.1994.6.3.189
dc.relationLaeng , B. ( 2006 ). Constructional apraxia after left or right unilateral stroke. Neuropsychologia, 44, 1595–1606.doi: 10.1016/j.neuropsychologia.2006.01.023
dc.relationMalhotra, P., Coulthard, E.J. & Husain, M. (2009). Role of right posterior parietal cortex in maintaining attention to spatial locations over time. A Journal of Neurology, 132, 643-660. doi:10.1093/brain/awn350
dc.relationManelis, A. & Reder, L.M. (2012). Procedural learning and associative memory mechanisms contribute to contextual cueing: Evidence from fMRI and eye-tracking. Learning & Memory, 19, 527-534. Retrieved from: http://www.learnmem.org/cgi/doi/10.1101/lm.025973.112.
dc.relationMeador, K.J., Allison, J.D., Loring, D.W., Lavin, T.B. & Pillai, J.J. (2002). Topography of somatosensory processing: Cerebral lateralization and focused attention. Journal of the International Neuropsychological Society, 8, 349-359. doi: 10.1017.S1355617701020161
dc.relationMiniussi, C., Rao, A. & Nobre, A.C. (2002). Watching where you look: modulation of visual processing of foveal stimuli by spatial attention. Neuropsychologia, 40, 2448-2460.doi: http://doi.org/10.1016/S0028-3932(02)00080-5
dc.relationMüri, R.M., Bühler, R., Heinemann, D., Mosimann, U.P., Felblinger, J., Schlaepfer, T.E. & Hess, C.W. (2002).
dc.relationHemispheric asymmetry in visuospatial attention assessed with transcranial magnetic stimulation. Experimental Brain Research, 143, 426-430. doi: 10.1007/s00221-002-1009-9
dc.relationNegash, S., Kliot, D., Howard, V., Howard, J.H., Das, S.R., Yushkevich, P.A., Pluta, J.B., Arnold, S.E. & Wolk, D.A. (2015). Relationship of contextual cueing and hippocampal volume in amnestic mild cognitive impairment patients and cognitively normal older adults. Journal of the International Neuropsychological Society, 21, 285-296. doi: https://doi.org/10.1017/S1355617715000223
dc.relationOcklenburg, S. & Güntürkün, O. (2012). Hemispheric asymmetries: The comparative view. Frontiers in Psychology, 3(5), 19.doi: 10.3389/fpsyg.2012.00005
dc.relationO’Connell, R.G., Schneider, D., Hester, R., Mattingley, J.B. & Bellgrove, M.A. (2010). Attentional load asymmetrically affects early electrophysiological indices of visual orienting. Cerebral Cortex, 21(5), 1056-1065. doi: https://doi.org/10.1093/cercor/bhq178
dc.relationOldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97-113. Retrieved from: http://gade.psy.ku.dk/Readings/Oldfield1971.pdf
dc.relationOlson, I.R. & Chun, M.M. (2002). Perceptual constraints on implicit learning of spatial context. Visual Cognition, 9(3), 273-302. doi:10.1080/13506280042000162
dc.relationPark, H., Quinlan, J., Thornton, E. & Reder, L. (2004). The effect of midazolam on visual search: Implications for understanding amnesia. Proceedings of the National Academy of Science, 101(51), 17879-17883. Retreived from: www.pnas.org_cgi_doi_10.1073_pnas.0408075101
dc.relationPurves, D., Augustine, G.J., Fitzpatrick, D., Hall, W.C., LaMantia, A., McNamara, J.O. & Williams, S.M. (2004) Neuroscience (3rd ed.). Sunderland, MA: Sinauer Associates, Inc
dc.relationReber, P.J. (2008). Cognitive neuroscience of declarative and nondeclarative memory. Human Learning, 139, 113-123. doi: http://doi.org/10.1016/S0166-4115(08)10010-3
dc.relationReber, P.J. (2013). The neural basis of implicit learning and memory: A review of neuropsychological and neuroimaging research. Neuropsychologia, 51, 2026-2042. doi: http://dx.doi.org/10.1016/j.neuropsychologia.2013.06.019
dc.relationReddon, A.R. & Hurd, P.L. (2009). Individual differences in cerebral lateralization are associated with shy-bold variation in convict cichlid. Animal Behaviour, 77, 189193. doi:10.1016/j.anbehav.2008.09.026
dc.relationRoser, M.E., Fiser, J., Aslin, R.N. & Gazzaniga, M.S. (2011). Right hemisphere dominance in visual statistical learning. Journal of Cognitive Neuroscience, 23(5), 1088-1099. doi:10.1162/jocn.2010.21508
dc.relationRushworth, M.F.S., Ellison, A. & Walsh, V. (2001). Complementary localization and lateralization of orienting and motor attention. Nature Neuroscience, 4(6), 656-661. doi:10.1038/88492
dc.relationRushworth, M.F.S., Krams, M. & Passingham, R.E. (2001). The attentional role of the left parietal cortex: The distinct lateralization and localization of motor attention in the human brain. Journal of Cognitive Neuroscience, 13(5), 698-710. doi:10.1162/089892901750363244
dc.relationSchott, B.H., Henson, R.N., Richardson-Klavehn, A., Becker, C., Thoma, V., Heinze, H. & Düzel, E. (2004). Redefining implicit and explicit memory: The functional neuroanatomy of priming, remembering, and control of retrieval. Procedings of the National Academy of Science, 102(4), 1257-1262. Retrieved from www.pnas.org_cgi_doi_10.1073_pnas.0409070102
dc.relationShulman, G.L, Pope, D.L.W., Astafiev, S.V., McAvoy, M.P., Snyder, A.Z. & Corbetta, M. (2010). Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal fronto-parietal network. The Journal of Neuroscience, 30(10), 3640-3651. doi:10.1523/JNEUROSCI.4085-09.2010
dc.relationSquire, L.R, Bloom, F.E., Spitzer, N.C., du Lac, S., Ghosh, A. & Berg, D. (2008). Fundamental Neuroscience (3rd ed.) San Diego, CA: Elsevier
dc.relationStevens, M.C., Calhoun, V.D. & Kiehl, K.A. (2005). Hemispheric differences in hemodynamics elicited by auditory oddball stimuli. Neuroimage, 26(3), 782-792. doi:10.1016/j.neuroimage.2005.02.044
dc.relationThiebaut de Schotten, M., Dell’Acqua, F., Forkel, S.J., Simmons, A., Vergani, F., Murphy, D.G.M. & Catani, M. (2011). A lateralized brain network for visuospatial attention. Nature Neuroscience, 14(10), 1245-1246. doi:10.1038/nn.2905
dc.relationVauclair, J., Yamazaki, Y. & Güntürkün, O. (2006). The study of hemispheric specialization for categorical and coordinate spatial relations in animals. Neuropsychologia, 44(9), 1524-1534. doi: http://doi.org/10.1016/j.neuropsychologia.2006.01.021
dc.relationVossel, S., Geng, J.J. & Fink, G.R. (2014). Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. Neuroscientist, 20(2), 150-159. doi: 10.1177/1073858413494269
dc.relationWu, Y., Wang, J., Zhang, Y., Zheng, D., Zhang, J., Rong, M., Wu., H., Wang, Y., Zhou, K. & Jiang, T. (2016). The neuroanatomical basis for posterior superior parietal lobule control lateralization of visuospatial attention. Frontiers in Neuroanatomy, 10(32), 1-9. doi: 10.3389/fnana.2016.00032
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleVisual hemifield differences in contextual cueing performance


Este ítem pertenece a la siguiente institución