dc.contributorBohórquez Ávila, Carlos Arturo
dc.creatorNoguera Vega, Luis Antonio
dc.date.accessioned2020-11-03T12:56:09Z
dc.date.available2020-11-03T12:56:09Z
dc.date.created2020-11-03T12:56:09Z
dc.identifierhttps://hdl.handle.net/10901/18601
dc.identifierinstname:Universidad Libre
dc.identifierreponame:Repositorio Institucional Universidad Libre
dc.description.abstractEl presente trabajo de investigación presenta los resultados de un estudio que busca analizar el potencial que puede tener la instalación de dispositivos piezoeléctricos en ciclorrutas y su interacción con el tráfico de bicicletas, como aporte a la búsqueda de alternativas de tecnologías de generación de energía eléctrica que permitan aprovechar el recurso presente en las ciclovías. El proyecto se centró en el análisis del tráfico de las bicicletas y su interacción con la ciclorruta, con lo cual fue posible determinar tendencias de uso y caracterizar su comportamiento diario. Con esta información se investigó que dispositivos piezoeléctricos pueden ser incorporados en estas vías con las características de las mismas, obteniendo curvas de generación de energía en función de la velocidad de desplazamiento. Se pudo concluir que el tráfico de bicicletas tiene un potencial significativo, pero desafortunadamente se ve opacado por los costos de estos dispositivos que en sí hacen que económicamente su implementación no sea nada atractiva, lo que deja a este tipo de tecnologías a la merced de los incentivos tributarios y apoyo en la financiación por parte de entidades o fondos gubernamentales. Asimismo, es evidente la necesidad de desarrollar una celda o baldosa que se adapte a las condiciones del tráfico de las bicicletas y que permita optimizar este recurso, ya que por día se puede tener un tráfico de 1206 bicicletas en promedio por hora y velocidades de circulación que pueden estar entre los 10 km/h y 30 km/h, llegando a generar hasta 9.6 kWh por día.
dc.description.abstractThis research paper presents the results of a study that seeks to analyze the potential that the installation of piezoelectric devices can have in bike paths and their interaction with bicycle traffic, as a contribution to the search for alternatives for electric power generation technologies. Allow to take advantage of the resource present in the cycle ways. The project focused on the analysis of the dynamics of bicycle traffic and its interaction with the bike path, with which it was possible to determine usage trends and characterize their daily behavior. With this information it was investigated that piezoelectric devices can be incorporated in these roads with their characteristics, obtaining power generation curves according to the speed of displacement. It could be concluded that bicycle traffic has significant potential, but unfortunately, it is overshadowed by the costs of these devices that in themselves make their implementation economically unattractive, leaving this type of technology at the mercy of the tax incentives and funding support from government entities or funds. Likewise, it is evident the need to develop a cell or tile that adapts to the conditions of the bicycle traffic and that allows optimizing this resource, since per day you can have an average traffic of 1206 bicycles per hour and circulation speeds which can be between 10 km / h and 30 km / h, generating up to 9.6 kWh per day.
dc.languagespa
dc.relationA. T. Papagiannakis and E. Masad, Pavement Design and Materials. 2008.
dc.relationA. T. Papagiannakis and E. Masad, Pavement Design and Materials. 2008.
dc.relationG. Guldentops, A. M. Nejad, C. Vuye, W. Van den bergh, and N. Rahbar, “Performance of a pavement solar energy collector: Model development and validation,” Appl. Energy, vol. 163, pp. 180–189, Feb. 2016.
dc.relationT. Morbiato, C. Borri, and R. Vitaliani, “Wind energy harvesting from transport systems: A resource estimation assessment,” Appl. Energy, vol. 133, pp. 152–168, Nov. 2014.
dc.relationS. Orrego et al., “Harvesting ambient wind energy with an inverted piezoelectric flag,” Appl. Energy, vol. 194, pp. 212–222, May 2017.
dc.relationZ. Lu, H. Zhang, C. Mao, and C. M. Li, “Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body,” Appl. Energy, vol. 164, pp. 57–63, Feb. 2016.
dc.relationH. Roshani, S. Dessouky, A. Montoya, and A. T. Papagiannakis, “Energy harvesting from asphalt pavement roadways vehicle-induced stresses: A feasibility study,” Appl. Energy, vol. 182, pp. 210–218, Nov. 2016.
dc.relationZ. Nili Ahmadabadi and S. E. Khadem, “Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device,” J. Sound Vib., vol. 333, no. 19, pp. 4444–4457, Sep. 2014.
dc.relationS. Ahmad, M. Abdul Mujeebu, and M. A. Farooqi, “Energy harvesting from pavements and roadways: A comprehensive review of technologies, materials, and challenges,” Int. J. Energy Res., vol. 43, no. 6, pp. 1974– 2015, May 2019.
dc.relationH. D. Zhao, J. M. Ling, and P. C. Fu, “A Review of Harvesting Green Energy from Road,” Adv. Mater. Res., vol. 723, pp. 559–566, Aug. 2013.
dc.relationH. Xiong, L. Wang, D. C. Wang D, D. Wang, and C. Druta, “Piezoelectric energy harvesting from traffic induced deformation of pavements. Int J Pavement Res Technol,” Int. J. Pavement Res. Technol., vol. 5, no. 5, Sep. 2012.
dc.relation] H. Xiong and L. Wang, “Piezoelectric energy harvester for public roadway: On-site installation and evaluation,” Appl. Energy, vol. 174, pp. 101–107, Jul. 2016.
dc.relationM. McGee, “Global Warming Update,” Co2.Earth, 2017. .
dc.relationA. M. Elhalwagy, M. Y. M. Ghoneem, and M. Elhadidi, “Feasibility Study for Using Piezoelectric Energy Harvesting Floor in Buildings’ Interior Spaces,” Energy Procedia, vol. 115, pp. 114–126, Jun. 2017.
dc.relationA. Morales Espitia and J. C. Calderón, “ANÁLISIS DE CONVENIENCIA DE LA IMPLEMENTACIÓN DE LA ENERGÍA PIEZOELÉCTRICA EN LAS SALAS DE CINECOLOMBIA EN LA CIUDAD DE BOGOTÁ D.C.,” Universidad Distrital, 2012.
dc.relationX. Xu, D. Cao, H. Yang, and M. He, “Application of piezoelectric transducer in energy harvesting in pavement,” Int. J. Pavement Res. Technol., 2018.
dc.relationU. Ministerio de Minas Energía, unidad de planeación minero energética, “PLAN DE EXPANSIÓN DE REFERENCIA GENERACIÓN – TRANSMISIÓN,” 2016.
dc.relationSecretaría Distrital de movilidad, “La Bicicleta en Bogotá,” Bogotá D.C, 2016.
dc.relationM. A. A. Abdelkareem et al., “Energy harvesting sensitivity analysis and assessment of the potential power and full car dynamics for different road modes,” Mech. Syst. Signal Process., vol. 110, pp. 307–332, 2018.
dc.relationZ. Yang, S. Zhou, J. Zu, and D. Inman, “High-Performance Piezoelectric Energy Harvesters and Their Applications,” Joule, vol. 2, no. 4, pp. 642–697, 2018.
dc.relationL. Guo and Q. Lu, “Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements,” Renew. Sustain. Energy Rev., vol. 72, no. December 2015, pp. 761–773, 2017.
dc.relationT. Fan, “Nano-scale energy harvester of piezoelectric/piezomagnetic structures with torsional mode,” Mech. Syst. Signal Process., vol. 112, pp. 147–153, 2018.
dc.relationM. H. S. Alrashdan, A. A. Hamzah, and B. Y. Majlis, “Power density optimization for MEMS piezoelectric micro power generator below 100 Hz applications,” Microsyst. Technol., vol. 24, no. 4, pp. 2071–2084, 2018.
dc.relationC. Espitia and E. Hernández, “Valoración de la capacidad de generación de energía eléctrica por medio de un dispositivo con efecto piezoeléctrico en las entradas vehiculares de la sede central de la UIS,” Universidad Industrial de Santander, 2011.
dc.relationCongreso de Colombia, “LEY 1715 2014,” 13 de mayo de 2014, 2014. [Online]. Available: http://www.secretariasenado.gov.co/senado/basedoc/ley_1715_2014.html. [Accessed: 20-Nov-2018].
dc.relation. FLOREZ ROJAS, “ENERGÍAS ALTERNATIVAS EN COLOMBIA BAJO LA LEY 1715,” Universidad Militar Nueva Granada, 2015.
dc.relationC. de R. de E. y G. CREG, CREG 030 DE 2018. 2018.
dc.relationC. de R. de E. y G. CREG, CREG 038 DE 2018. 2018.
dc.relationM. D. M. Y. E. MINHACIENDA. MINMINAS, “Decreto 1543 de 2017,” 2017. [Online]. Available: http://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=83537. [Accessed: 29-Nov-2018].
dc.relationLa Bicicleta, “Tipos de bicicleta,” 2015. [Online]. Available: https://labicicleta.info/tipos-de-bicicleta/. [Accessed: 07-Nov-2018].
dc.relationMinisterio de Transporte de Colombia, “Guía de ciclo-infraestructura para ciudades colombianas,” Bogotá D.C., 2016.
dc.relationDepartamento Nacional de Planeación de Colombia, “Construcción de cicloinfraestructura y servicios complementarios,” Bogotá D.C, 2017.
dc.relationA. Brown et al., “Estimating Renewable Energy Economic Potential in the United States: Methodology and Initial Results,” 2014.
dc.relation] A. Lopez, B. Roberts, D. Heimiller, N. Blair, and G. Porro, “U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis,” 2012.
dc.relationR. Vela, “Caracterización de la Respuesta Piezoeléctrica de Compuestos Basados en PVDF - BaTiO3,” Universidad Carlos III de Madrid, 2013.
dc.relationB. Gusarov, “PVDF piezoelectric polymers : characterization and application to thermal energy harvesting,” Université Grenoble Alpes, 2015.
dc.relationS.-E. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys., vol. 82, no. 4, pp. 1804–1811, Aug. 1997.
dc.relationSeung-Eek Park and T. R. Shrout, “Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 44, no. 5, pp. 1140–1147, Sep. 1997.
dc.relationT. L. Jordan and Z. Ounaies, “Piezoelectric Ceramics Characterization,” 2001.
dc.relationE. Fukada, “History and recent progress in piezoelectric polymers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 47, no. 6, pp. 1277–1290, Nov. 2000.
dc.relationE. K. Akdogan, M. Allahverdi, and A. Safari, “Piezoelectric composites for sensor and actuator applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, no. 5, pp. 746–775, May 2005.
dc.relationE. K. Akdogan, M. Allahverdi, and A. Safari, “Piezoelectric composites for sensor and actuator applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, no. 5, pp. 746–775, May 2005.
dc.relationP. Muralt, R. G. Polcawich, and S. TrolierMcKinstry, “Piezoelectric Thin Films for Sensors, Actuators, and Energy Harvesting,” MRS Bull. , vol. 34, 2009.
dc.relationB. Jaffe, W. R. Cook, and H. L. Jaffe, Piezoelectric ceramics, 3rd ed. Academic Press, 2012.
dc.relationT. R. Shrout and S. J. Zhang, “Lead-free piezoelectric ceramics: Alternatives for PZT?,” J. Electroceramics, vol. 19, no. 1, pp. 113–126, Oct. 2007.
dc.relationA. J. Moulson and J. M. Herbert, Electroceramics. 2003.
dc.relationH. Jaffe and D. A. Berlincourt, “Piezoelectric transducer materials,” Proc. IEEE, vol. 53, no. 10, pp. 1372–1386, 1965.
dc.relationH. JAFFE, “Piezoelectric Ceramics,” J. Am. Ceram. Soc., vol. 41, no. 11, pp. 494–498, Nov. 1958.
dc.relationL. EGERTON and D. M. DILLON, “Piezoelectric and Dielectric Properties of Ceramics in the System Potassium-Sodium Niobate,” J. Am. Ceram. Soc., vol. 42, no. 9, pp. 438–442, Sep. 1959.
dc.relationY. Guo, K. Kakimoto, and H. Ohsato, “(Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics,” Mater. Lett., vol. 59, no. 2–3, pp. 241–244, Feb. 2005.
dc.relationR. T. Smith and F. S. Welsh, “Temperature Dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate,” J. Appl. Phys., vol. 42, no. 6, pp. 2219–2230, May 1971.
dc.relationF. R. Cruickshank, “Ferroelectric Materials and their Applications,” J. Mod. Opt., vol. 39, no. 5, pp. 1162–1163, May 1992.
dc.relationR. Rai, S. Sharma, and R. N. P. Choudhary, “Dielectric and piezoelectric studies of Fe doped PLZT ceramics,” Mater. Lett., vol. 59, no. 29–30, pp. 3921–3925, Dec. 2005.
dc.relationN. K. James, D. van den Ende, U. Lafont, S. van der Zwaag, and W. A. Groen, “Piezoelectric and mechanical properties of structured PZT–epoxy composites,” J. Mater. Res., vol. 28, no. 4, pp. 635–641, Feb. 2013.
dc.relationV. Janicek and M. Husak, “European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) Polymer Based Piezoelectric Energy Microgenerator.”
dc.relation] R. Bechmann, “Elastic and Piezoelectric Constants of Alpha-Quartz,” Phys. Rev., vol. 110, no. 5, pp. 1060–1061, Jun. 1958.
dc.relationJ. G. Webster, H. Eren, and H. Eren, Measurement, Instrumentation, and Sensors Handbook, Second Edition. CRC Press, 2014.
dc.relationA. S. Karapuzha, “Exploration of Non-MPB PZT Compositions for High Piezoelectric Voltage Sensitive 0-3 Composites,” 2014.
dc.relationS.-J. Yoon et al., “Piezoelectric Properties of Pb[Zr0.45Ti0.5- xLux(Mn1/3Sb2/3)0.05]O3 Ceramics,” J. Am. Ceram. Soc., vol. 81, no. 9, pp. 2473–2476, Jan. 2005.
dc.relationS. R. Moheimani and A. J. Fleming, Piezoelectric Transducers for Vibration Control and Damping. London: Springer-Verlag, 2006.
dc.relationR. C. Pullar et al., “Manufacture and measurement of combinatorial libraries of dielectric ceramics. Part II. Dielectric measurements of Ba1-xSrxTiO3 libraries,” J. Eur. Ceram. Soc., vol. 27, no. 16, pp. 4437–4443, 2007.
dc.relationL. APC International, Piezoelectric ceramics : principles and applications. APC International, 2011.
dc.relation] D. Gretarsson, “Energy Harvesting using Piezoelectric Generators,” Copenhagen, 2007.
dc.relationSagentia, “Energy Harvesting,” 2016.
dc.relationH.-H. Rogner et al., “Energy Resources and Potentials,” in Global Energy Assessment, 2012, pp. 430–503.
dc.relationN. Maluf, K. Williams, and N. Maluf, Introduction to microelectromechanical systems engineering. Artech House, 2004.
dc.relationS. G. Kim, S. Priya, and I. Kanno, “Piezoelectric MEMS for energy harvesting,” MRS Bull., vol. 37, no. 11, pp. 1039–1050, 2012.
dc.relationAlcancía Mayor de Bogotá, “Proyecciones de población por localidades para Bogotá 2016-2020,” Bogotá D.C, 2014.
dc.relationSecretaría Distrital de Movilidad, “La bicicleta en Bogotá,” Bogotá D.C, 2016.
dc.relationR. Caracol, Las ciclorutas más transitadas: Las cinco ciclorutas más transitadas en Bogotá. Colombia, 2017.
dc.relationAlcaldía Mayor de Bogotá, “Mapa CicloRutas,” Bogotá D.C, 2017.
dc.relationS. Meneses, “Estudio de la Universidad Libre, uso de la bicicleta en Bogotá,”
dc.relation[Online]. Available: http://www.unilibre.edu.co/bogota/ul/noticias/noticias-universitarias/3651- estudio-de-la-universidad-libre-revela-completa-radiografia-del-uso-de-la- bicicleta-en-bogota. [Accessed: 06-Nov-2018].
dc.relationA. Alvarez, “La medida de rueda ideal: ¿26, 27’5 o 29?,” 2013. [Online]. Available: https://solobici.es/la-medida-de-rueda-ideal-26-275-o-29/. [Accessed: 08-Nov-2018].
dc.relationQ. He, X. Fan, and D. Ma, “Full Bicycle Dynamic Model for Interactive Bicycle Simulator,” J. Comput. Inf. Sci. Eng., vol. 5, no. 4, p. 373, 2005.
dc.relationE. L. WANG and M. L. HULL, “The Impact of Bicycle Suspension on Pedaling Forces,” Appl. Sci. Precis. Eng. Innov. Pts 1 2, vol. 479–480, pp. 338–342, 1996.
dc.relationE. L. WANG and M. L. HULL, “The effect of tyre and rider properties on the stability of a bicycle,” Adv. Mech. Eng., vol. 7, no. 12, pp. 1–19, 1996.
dc.relationE. L. Wang and M. L. Hull, “A model for determining rider induced energy losses in bicycle suspension systems,” Veh. Syst. Dyn., vol. 25, no. 3, pp. 223–246, 1996.
dc.relationP. NAVARRO, R.-W. RUI-WAMBA, C. ORIOL, and A. FERNÁNDEZ, “LA INGENIERÍA DE LA BICICLETA,” 2009.
dc.relationG. Di Rado, D. Presta, and G. Devincenzi, “Análisis de las fuerzas que actúan en la interface neumático – carretera. Modelos de simulación de aceleración.,” Mecánica Comput., vol. XXXII, pp. 2333–2362, 2013.
dc.relationJ. Renart and P. Roura-Grabulosa, “Deformation of an inflated bicycle tire when loaded,” Am. J. Phys., vol. 87, no. 2, pp. 102–109, 2019.
dc.relationE. L. WANG and M. L. HULL, “Vehicle System Dynamics : International Journal of Vehicle Mechanics and Identification of the mechanical properties of bicycle tyres for modelling of bicycle dynamics,” no. January 2013, pp. 37– 41, 1996.
dc.relationR. Ahmed, F. Mir, and S. Banerjee, “A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity,” Smart Mater. Struct., vol. 26, no. 8, p. 085031, 2017.
dc.relationK. B. Kim et al., “Optimized composite piezoelectric energy harvesting floor tile for smart home energy management,” Energy Convers. Manag., vol. 171, no. January, pp. 31–37, 2018.
dc.relationK. Q. Fan and Z. H. Liu, “Capturing energy through a shoe-mounted piezoelectric energy harvester,” IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, AIM, vol. 2018–July, pp. 768–773, 2018.
dc.relationE. Pérez Pineda and S. Velazquez Alfaro, “Diseño e implementación de un generador piezoeléctrico baldosa, para alimentar un sistema de iluminación de baja potencia.,” 2016.
dc.relationY. Kuang and M. Zhu, “Design study of a mechanically plucked piezoelectric energy harvester using validated finite element modelling,” Sensors Actuators, A Phys., vol. 263, pp. 510–520, 2017.
dc.relationX. Ma, A. Wilson, C. D. Rahn, and S. Trolier-McKinstry, “Efficient Energy Harvesting Using Piezoelectric Compliant Mechanisms: Theory and Experiment,” J. Vib. Acoust., vol. 138, no. 2, p. 021005, 2015.
dc.relationF. Duarte and F. Casimiro, “The way for energy harvesting: Business model design. Diss,” 2011.
dc.relationF. Balouchi, “Footfall Energy Harvesting Conversion Mechanisms,” 2013.
dc.relationJ. Ryall, “Japan harnesses energy from footsteps,” 2008. [Online]. Available: https://www.telegraph.co.uk/news/earth/energy/3721841/Japan-harnesses- energy-from-footsteps.html. [Accessed: 11-Jun-2019].
dc.relationSoundpower corporation, “Soundpower corporation,” 2019. [Online]. Available: http://www.soundpower.co.jp/work/vibration.html#ttl_N7. [Accessed: 11-Jun-2019].
dc.relationFarahat and Baher Ismail, “Piezoelectric materials "Potentials and Constrains" Upgrading Designs and Techniques,” 2014.
dc.relationE. Bischur and N. Schwesinger, “Energy harvestingfrom floor using organic piezoelectric modules,” in 2012 Power Engineering and Automation Conference, 2012, pp. 1–4.
dc.relationA. Schwartz, “Electricty Generating Dance Floors and Other Miracles of Piezoelectricity,” 2011.
dc.relationE. Bischur and N. Schwesinger, “Piezoelectric energy harvester under parquet floor,” 2011, p. 79770M.
dc.relationH. Kim, S. Priya, and K. Uchino, “Modeling of Piezoelectric Energy Harvesting Using Cymbal Transducers,” Jpn. J. Appl. Phys., vol. 45, no. 7, pp. 5836–5840, Jul. 2006.
dc.relationD. Hill et al., “Assessment of Piezoelectric Materials for Roadway Energy Harvesting: Cost of Energy and Demonstration Roadmap-007,” 2014.
dc.relationH. ZHAO, J. YU, and J. LING, “Finite element analysis of Cymbal piezoelectric transducers for harvesting energy from asphalt pavement,” J. Ceram. Soc. Japan, vol. 118, no. 1382, pp. 909–915, 2010.
dc.relation] C.-I. Kim et al., “Development and Evaluation of the Road Energy Harvester Using Piezoelectric Cantilevers,” J. Korean Inst. Electr. Electron. Mater. Eng., vol. 25, no. 7, pp. 511–515, 2012.
dc.relationA. Kokkinopoulos, G. Vokas, and P. Papageorgas, “Energy harvesting implementing embedded piezoelectric generators-The potential for the Attiki Odos traffic grid,” Energy Procedia, vol. 50, pp. 1070–1085, 2014.
dc.relationJ. Liang and W.-H. Liao, “Impedance matching for improving piezoelectric energy harvesting systems,” 2010, p. 76430K.
dc.relationY. Zhang, C. S. Cai, and W. Zhang, “Related content A retrofitted energy harvester for low frequency vibrations Experimental study of a multi-impact energy harvester under low frequency excitations,” 2014.
dc.relationZ. Yang, J. Zu, J. Luo, and Y. Peng, “Modeling and parametric study of a force-amplified compressive-mode piezoelectric energy harvester,” J. Intell. Mater. Syst. Struct., vol. 28, no. 3, pp. 357–366, Feb. 2017.
dc.relationO. HOYOS GUTIÉRREZ and C. J. HERNÁNDEZ MEJÍA, “ESTUDIO DE VIABILIDAD TÉCNICA Y ECONÓMICA PARA LA IMPLEMENTACIÓN DE UN SISTEMA DE ENERGÍA SOLAR FOTOVOLTAICA DE 10 KW, CASO ‘HOSPITAL LOCAL DE TENERIFE, MAGDALENA.,’” 2017.
dc.relationIDEAM, “Atlas Interactivo - Radiación IDEAM,” 2019. [Online]. Available: http://atlas.ideam.gov.co/visorAtlasRadiacion.html. [Accessed: 26-Jun-2019].
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectGeneración de energía
dc.subjectTecnología piezoeléctrica
dc.subjectEnergías alternativas
dc.titlePotencial de generación de energía eléctrica con la tecnología piezoeléctrica aplicada al tránsito de bicicletas de la ciudad de Bogotá D.C.


Este ítem pertenece a la siguiente institución