dc.contributor | Parga Lozano, Carlos Hernando | |
dc.creator | Coley Silva, Luis Fernando | |
dc.creator | Ahumada Navarro, Waldy Enrique | |
dc.date.accessioned | 2020-01-31T15:41:27Z | |
dc.date.available | 2020-01-31T15:41:27Z | |
dc.date.created | 2020-01-31T15:41:27Z | |
dc.identifier | https://hdl.handle.net/10901/17816 | |
dc.description.abstract | La actividad antiinflamatoria ha despertado en los últimos años un gran interés científico en el área farmacológica, principalmente en virtud de la capacidad potencial de ciertos metabolitos de interferir en la evolución de enfermedades que cursan con procesos inflamatorios. Dicho proceso involucra una serie de eventos inespecíficos que pueden ser provocados por numerosos estímulos o agresiones del medio. Debido a esto, un número de plantas medicinales han mostrado actividad farmacológica útil, incluyendo efectos antiinflamatorios. Entre estas plantas, Bursera simaruba, es un árbol comúnmente difundido en Venezuela, Belice, Colombia y Centroamérica. En estos países se ha utilizado con éxito para el tratamiento de infecciones locales y sistémicas. De este modo, se busca describir la respuesta inmunomoduladora de los extractos de la planta Bursera simaruba y su aplicabilidad terapéutica en el tratamiento de enfermedades inflamatorias. Por consiguiente, se realizó una revisión de la literatura científica en diferentes bases de datos (PubMed, Scopus y ScienceDirect) con una ruta de búsqueda sencilla. Se encontró que los metabolitos analizados presentaron efectos inhibitorios sobre la expresión de las citoquinas proinflamatorias, de las enzimas mediadoras y los catabolitos. Esta actividad inhibitoria se debió principalmente a la inactivación de la vía NF-κB o a la regulación de algunos factores de transcripción. En conclusión estos resultados sugieren que la planta Bursera simaruba tiene efectos antiinflamatorios y puede ser una opción potencial en el tratamiento de las enfermedades inflamatorias. | |
dc.description.abstract | Anti-inflammatory activity has aroused in recent years a great scientific interest in the pharmacological area, mainly due to the potential capacity of certain metabolites to interfere in the evolution of diseases that occur with inflammatory processes. This process involves a series of nonspecific events that can be caused by numerous stimuli or attacks from the environment. Because of this, a number of medicinal plants have shown useful pharmacological activity, including anti-inflammatory effects. Among these plants, Bursera simaruba, is a tree commonly spread in Venezuela, Belize, Colombia and Central America. In these countries it has been used successfully for the treatment of local and systemic infections. In this way, we seek to describe the immunomodulatory response of the extracts of the Bursera simaruba plant and its therapeutic applicability in the treatment of inflammatory diseases. Therefore, a review of the scientific literature in different databases (PubMed, Scopus and ScienceDirect) was performed with a simple search path. The analyzed metabolites were found to have inhibitory effects on the expression of proinflammatory cytokines, mediating enzymes and catabolites. This inhibitory activity was mainly due to the inactivation of the NF-κB pathway or the regulation of some transcription factors. In conclusion, these results suggest that the Bursera simaruba plant has anti-inflammatory effects and may be a potential option in the treatment of inflammatory diseases. | |
dc.language | spa | |
dc.relation | Carballo M Cortada, C, Gadano, A. Medicinal herbs: Risks and benefits in their uses. Theoria. 2005;14(2):95-108. | |
dc.relation | Amirghofran Z. Medicinal plants as immunosuppressive agents in traditional Iranian medicine. Iran J Immunol. 2010; 3 | |
dc.relation | Lopez A Hudson, J,B, Towers, G,H,N. Antiviral and antimicrobial activities of Colombian medicinal plants. Journal of Ethnopharmacology. 2001;77(2-3):18996. | |
dc.relation | Cracraft J Grifo, F,T. The living planet in crisis: Biodiversity science and policy. 1999;xxiv,-311 p. 5 | |
dc.relation | Lee A N, Werth, V,P. Activation of autoimmunity following use of immunostimulatory herbal supplements. Archives of Dermatology. 2004;140(6):723-7. | |
dc.relation | Gómez Estrada H González Ruiz, A, Noreica, K, Medina, J,D. Actividad antiinflamatoria de productos naturales. Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas. 2011;10(3):182-217. | |
dc.relation | Koeberle A Haberl, E,M, Rossi, A, Pergola, C, Dehm, F, Northoff, H, Troschuetz, R, Sautebin, L, Werz, O. Discovery of benzo[g]indol-3-carboxylates as potent inhibitors of microsomal prostaglandin E2synthase-1. Bioorganic and Medicinal Chemistry. 2009;17(23):7924-32. 8 | |
dc.relation | Nicolaides N, Charmandari E, Chrousos G. Overview of Glucocorticoids. Encyclopedia of Endocrine Diseases. 2018;3(Second Edition):64-71. | |
dc.relation | Amann R Peskar, B,A. Anti-inflammatory effects of aspirin and sodium salicylate. European journal of pharmacology. 2002;447(1):1-9. | |
dc.relation | Roth G J, Stanford, N, Majerus, P,W. Acetylation of prostaglandin synthase by aspirin. Proceedings of the National Academy of Sciences of the United States of America. 1975;72(8):3073-6. | |
dc.relation | Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature New Biology. 1971;231(25):232-5. | |
dc.relation | Shukla S Bajpai, V,K, Kim, M. Plants as potential sources of natural immunomodulators. Reviews in Environmental Science and Biotechnology. 2014;13(1):17-33. | |
dc.relation | Amirghofran Z. Herbal medicines for immunosuppression. Iranian Journal of Allergy, Asthma and Immunology. 2012;11(2):111-9. | |
dc.relation | Qi Zh. The WHO traditional medicine strategy 2014-2023: Background and progress in the last decade. Global Health History Seminar on Traditional Medicine and Ayurveda. 2015;(March):1-28. | |
dc.relation | Seifert W. Compositions and methods for inhibiting COX-2 expression and treating COX-2 associated disorders by using COX-2 antisense oligonucleotides. US 6344323 B1, 2002. p. 30. | |
dc.relation | Rojas M W, Anaya, C, Cano R,J,M, Aristizábal, L,E, Gómez, B,H, Lopera H,L,M. Inmunología de Rojas. 2002. 113–153 p. | |
dc.relation | Guo H Callaway, J,B, Ting, J,P,Y. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nature Medicine. 2015;21(7):677-87 | |
dc.relation | Schroder K Tschopp, J. The inflammasomes. Cell. 2010;140(6):821-32 | |
dc.relation | Montaño Estrada LF, Van der Goes TF, Rendón Huerta EP. ¿Qué son los inflamosomas? El NLRP3 como ejemplo. 2016;42-9. 21 | |
dc.relation | Milagros García Mesa L Cristina Coma Alfonso, L. Características estructurales y funcionales de las plaquetas. Rev Cubana Angiol y Cir Vasc. 2000;1(2):132-41. | |
dc.relation | Abbas A K, Lichtman, A,H, Pillaj, S. Inmunología celular y molecular. Séptima. 2012. 555 p. | |
dc.relation | Landén N X, Li, D, St\a ahle, M. Transition from inflammation to proliferation: A critical step during wound healing. Cellular and Molecular Life Sciences. 2016;73(20):3861-85. | |
dc.relation | Sipe J D. The acute phase response in the pathogenesis of inflammatory disease: Prospects for pharmacotherapy. Clinical Immunotherapeutics. 1999;3(4) | |
dc.relation | Lotze M T, Thomson, A,W. Measuring immunity: Basic biology and clinical assessment. 2005. 722 p. | |
dc.relation | Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget [Internet]. 23 de enero de 2018 [citado 22 de julio de 2019];9(6). Disponible en: http://www.oncotarget.com/fulltext/23208 | |
dc.relation | Rodríguez F R, Córdoba, G,T. Árboles del Valle Central de Costa Rica: Reproducción. Indio desnudo. Revista Forestal Mesoamericana Kurú. 2011;8(20):39-42. | |
dc.relation | Culioli G Mathe, C, Archier, P, Vieillescazes, C. A lupane triterpene from frankincense (Boswellia sp., Burseraceae). Phytochemistry. 2003;62(4):537-41 | |
dc.relation | Syamasundar K V, Mallavarapu, G,R. Two triterpenoid lactones from the resin of Bursera delpechiana. Phytochemistry. 1995;40(1):337-9 | |
dc.relation | Peraza-Sánchez S R, Peña-Rodríguez, L,M. Isolation of picropolygamain from the resin of Bursera simaruba. Journal of Natural Products. 1992;55(12):1768-71. | |
dc.relation | Peraza-Sánchez S R, Salazar-Aguilar, N,E, Peña-Rodríguez, L,M. A new triterpene from the resin of Bursera simaruba. Journal of Natural Products. 1995;58(2):271-4. | |
dc.relation | Landis J R, Koch, G,G. The measurement of observer agreement for categorical data. Biometrics. marzo de 1977;33(1):159-74. 42 | |
dc.relation | Noguera B Díaz, E, García, M,V, Feliciano, A,S, López-Pérez, J,L, Israel, A. Anti-inflammatory activity of leaf extract and fractions of Bursera simaruba (L.) Sarg (Burseraceae). Journal of Ethnopharmacology. 2004;92(1):129-33 | |
dc.relation | Abad M J, Bermejo, P, Carretero, E, Martínez-Acitores, C, Noguera, B, Villar, A. Antiinflammatory activity of some medicinal plant extracts form Venezuela. Journal of ethnopharmacology. 1996;55(1):63-8. 44 | |
dc.relation | Carretero ME López-Pérez, JL, Abad, MJ, Bermejo, P, Tillet, S, Israel, A, Noguera-P, B. Preliminary study of the anti-inflammatory activity of hexane extract and fractions from Bursera simaruba (Linneo) Sarg. (Burseraceae) leaves. Journal of Ethnopharmacology. 2008;116(1):11-5 | |
dc.relation | Beermann F Orlow, S,J, Lamoreux, M,L. The Tyr (albino) locus of the laboratory mouse. Mammalian genome : official journal of the International Mammalian Genome Society. octubre de 2004;15(10):749-58 | |
dc.relation | Rice M C, O’Brien, S,J. Genetic variance of laboratory outbred Swiss mice. Nature. enero de 1980;283:157 | |
dc.relation | Takamatsu S Tosa, T. Production of L-alanine and D-aspartic acid. Bioprocess technology. 1993;16:25-35. | |
dc.relation | Van De Velde F Lourenço, N,D, Pinheiro, H,M, Bakker, M. Carrageenan: A food-grade and biocompatible support for immobilisation techniques. Advanced Synthesis and Catalysis. 2002;344(8):815-35. 54 | |
dc.relation | Zacharopoulos V R, Phillips, D,M. Vaginal formulations of carrageenan protect mice from herpes simplex virus infection. Clinical and diagnostic laboratory immunology. julio de 1997;4(4):465-8. | |
dc.relation | Barbeyron T Michel, G, Potin, P, Henrissat, B, Kloareg, B. Iota-carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of kappacarrageenases. The Journal of biological chemistry. noviembre de 2000;275(45):35499-505 | |
dc.relation | Henriques M G, Silva, P,M, Martins, M,A, Flores, C,A, Cunha, F,Q, AssreuyFilho, J, Cordeiro, R,S. Mouse paw edema. A new model for inflammation? Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas. 1987;20(2):243-9. | |
dc.relation | Paschapur M S, Patil, M,B, Kumar, R, Patil, S,R. Evaluation of antiinflammatory activity of ethanolic extract of Borassus flabellifer L. male flowers (inflorescences) in experimental animals. Journal of Medicinal Plants Research. 2009;3(2):049-54. | |
dc.relation | Sini J M, Yaro, A,H, Ayanwuyi, L,O, Aiyelero, O,M, Mallum, S,M, Gamaniel, K,S. Antinociceptive and anti-inflammatory activities of the aqueous extract of the root bark of Combretum sericeum in rodents. African Journal of Biotechnology. 2010;9(51):8872-6. | |
dc.relation | Sugishita E Amagaya, S, Ogihara, Y. Anti-inflammatory testing methods: Comparative evaluation of mice and rats. Journal of pharmacobio-dynamics. agosto de 1981;4(8):565-75. | |
dc.relation | Posadas I Bucci, M, Roviezzo, F, Rossi, A, Parente, L, Sautebin, L, Cirino, G. Carrageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxygenase-2 expression. British journal of pharmacology. mayo de 2004;142(2):331-8. | |
dc.relation | Porto G G, Vasconcelos, B, Cavalcanti Do Egito, S, Valdemiro A, Andrade, E,S,D,S. The use of carrageenan for limiting the mandibular movement in rats: A preliminary experimental study. Medicina Oral, Patologia Oral y Cirugia Bucal. 2010;15(4):653-7 | |
dc.relation | Radhakrishnan R Bement, M,K,H, Skyba, D, Sluka, K,A. Models of muscle pain: Carrageenan model and acidic saline model. Pharmacology. 2004;1-28. | |
dc.relation | Salvemini D Wang, Z,Q, Wyatt, P,S, Bourdon, D,M, Marino, M,H, Manning, P,T, Currie, M,G. Nitric oxide: A key mediator in the early and late phase of carrageenan-induced rat paw inflammation. British journal of pharmacology. junio de 1996;118(4):829-38. | |
dc.relation | Stranden E. A comparison between surface measurements and water displacement volumetry for the quantification of leg edema. Journal of the Oslo city hospitals. diciembre de 1981;31(12):153-5. | |
dc.relation | Satyam S M, Bairy, K,L, Musharraf, S, Fernandes, D,L. Inhibition of croton oilinduced oedema in rat ear skin by topical nicotinamide gel. Pharmacologyonline. 2014;3:22-5 | |
dc.relation | Garcia-Romo G S, Caielli, S, Vega, B, Connolly, J, Allantaz, F, Xu, Z, Punaro, M, Baisch, J, Guiducci, C, Coffman, R,L, Barrat, F,J, Banchereau, J, Pascual, V. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Science translational medicine. marzo de 2011;3(73):73ra20. | |
dc.relation | Hakkim A Furnrohr, B,G, Amann, K, Laube, B, Abed, U,A, Brinkmann, V, Herrmann, M, Voll, R,E, Zychlinsky, A. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proceedings of the National Academy of Sciences of the United States of America. mayo de 2010;107(21):9813-8. | |
dc.relation | Huang H Tohme, S, Al-Khafaji, A,B, Tai, S, Loughran, P, Chen, L, Wang, S, Kim, J, Billiar, T, Wang, Y, Tsung, A. Damage-associated molecular patternactivated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology (Baltimore, Md). agosto de 2015;62(2):600-14. | |
dc.relation | Lande R Ganguly, D, Facchinetti, V, Frasca, L, Conrad, C, Gregorio, J, Meller, S, Chamilos, G, Sebasigari, R, Riccieri, V, Bassett, R, Amuro, H, Fukuhara, S, Ito, T, Liu, Y,J, Gilliet, M. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Science translational medicine. marzo de 2011;3(73):73ra19. | |
dc.relation | Díaz-Ochoa V E, Jellbauer, S, Klaus, S, Raffatellu, M. Transition metal ions at the crossroads of mucosal immunity and microbial pathogenesis. Frontiers in cellular and infection microbiology. 2014;4:2. | |
dc.relation | Sohnle P G, Collins-Lech, C, Wiessner, J,H. The zinc-reversible antimicrobial activity of neutrophil lysates and abscess fluid supernatants. The Journal of infectious diseases. julio de 1991;164(1):137-42. 132 | |
dc.relation | Damo S M, Kehl-Fie, T,E, Sugitani, N, Holt, M,E, Rathi, S, Murphy, W,J, Zhang, Y, Betz, Ch, Hench, L, Fritz, G, Skaar, E,P, Chazin, W,J. Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens. Proceedings of the National Academy of Sciences of the United States of America. marzo de 2013;110(10):3841-6 | |
dc.relation | Hayden J A, Brophy, M,B, Cunden, L,S, Nolan, E,M. High-affinity manganese coordination by human calprotectin is calcium-dependent and requires the histidine-rich site formed at the dimer interface. Journal of the American Chemical Society. enero de 2013;135(2):775-87 | |
dc.relation | Kehl-Fie T E, Chitayat, S, Hood, M,I, Damo, S, Restrepo, N, García, C, Munro, K,A, Chazin, W,J, Skaar, E,P. Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell host & microbe. agosto de 2011;10(2):158-64 | |
dc.relation | Riva M Källberg, E, Björk, P, Hancz, D, Vogl, T, Roth, J, Ivars, F, Leanderson, T. Induction of nuclear factor-κB responses by the S100A9 protein is Toll-like receptor-4-dependent. Immunology. 2012;137(2):172-82. | |
dc.relation | Fadok V A, Bratton, D,L, Konowal, A, Freed, P,W, Westcott, J,Y, Henson, P,M. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. The Journal of clinical investigation. febrero de 1998;101(4):890-8. | |
dc.relation | Maderna P Yona, S, Perretti, M, Godson, C. Modulation of phagocytosis of apoptotic neutrophils by supernatant from dexamethasone-treated macrophages and annexin-derived peptide Ac(2-26). Journal of immunology (Baltimore, Md : 1950). marzo de 2005;174(6):3727-33. | |
dc.relation | Scannell M Flanagan, M,B, DeStefani, A, Wynne, K,J, Cagney, G, Godson, C, Maderna, P. Annexin-1 and peptide derivatives are released by apoptotic cells and stimulate phagocytosis of apoptotic neutrophils by macrophages. Journal of immunology (Baltimore, Md : 1950). abril de 2007;178(7):4595-605. | |
dc.relation | Katakami Y Nakao, Y, Koizumi, T, Katakami, N, Ogawa, R, Fujita, T. Regulation of tumour necrosis factor production by mouse peritoneal macrophages: the role of cellular cyclic AMP. Immunology. agosto de 1988;64(4):719-24. | |
dc.relation | Chand N Eyre, P. Nonsteroidal anti-inflammatory drugs: A review. New applications in hypersensitivity reactions of cattle and horses. Canadian journal of comparative medicine Revue canadienne de médecine comparée. 1977;41(3):233-40. | |
dc.relation | Ferreira S H, Moncada, S, Vane, J,R. Prostaglandins and the mechanism of analgesia produced by aspirin-like drugs. British Journal of Pharmacology. febrero de 1997;120(Suppl 1):401-12 | |
dc.relation | Tauber A I, Kaliner, M, Stechschulte, D,J, Austen, K,F. Immunologic release of histamine and slow reacting substance of anaphylaxis from human lung. V. Effects of prostaglandins on release of histamine. Journal of immunology (Baltimore, Md : 1950). julio de 1973;111(1):27-32. | |
dc.relation | Jiang Q Lykkesfeldt, J, Shigenaga, M,K, Shigeno, E,T, Christen, S, Ames B N. Gamma-tocopherol supplementation inhibits protein nitration and ascorbate oxidation in rats with inflammation. Free radical biology & medicine. diciembre de 2002;33(11):1534-42 | |
dc.relation | Uhlar C M, Whitehead, A,S. Serum amyloid A, the major vertebrate acutephase reactant. Eur J Biochem. 1999; | |
dc.relation | Newton R F, Roberts, S,M. Prostaglandins and tromboxanes: Butterworths
monographs in chemistry. 2016; | |
dc.relation | Henley JL, Denese, Adrienne A. Immunotherapy of inflammatory sinus and
ear disease. 6027712, 2000. p. 10. | |
dc.relation | Agou F, Chiaravalli J, Yves-Marie C, Francoise B, Alain I, Michel V. Method
for screening for selective modulator of the NF-kB pathway activation. 0240040
A1, 2010. | |
dc.relation | Maldini M Montoro, P, Piacente, S, Pizza, C. Phenolic compounds from
Bursera simaruba Sarg. bark: Phytochemical investigation and quantitative
analysis by tandem mass spectrometry. Phytochemistry. 2009;70(5):641-9. | |
dc.relation | Ciccio J F, Rosales, K,M. Isolation of the lignan yatein from bark of Bursera
simaruba (Burseraceae). Ing Cien Quim. 1995 | |
dc.relation | Sosa S Balick, M,J, Arvigo, R, Esposito, R,G, Pizza, C, Altinier, G, Tubaro, A.
Screening of the topical anti-inflammatory activity of some Central American
plants. Journal of Ethnopharmacology. 2002;81(2):211-5. | |
dc.relation | Biosciences T. B6 Albino Mouse Models. | |
dc.relation | Cui S Chesson, C, Hope, R. Genetic variation within and between strains of
outbred Swiss mice. Laboratory animals. abril de 1993;27(2):116-23 | |
dc.relation | Necas J Bartosikova, L. Carrageenan: A review. Veterinarni Medicina.
2013;58(4):187-205. | |
dc.relation | Tobacman J K. Review of harmful gastrointestinal effects of carrageenan in
animal experiments. Environmental Health Perspectives. 2001;109(10):983-94. | |
dc.relation | Petersson M Wiberg, U, Lundeberg, T, Uvnas-Moberg, K. Oxytocin
decreases carrageenan induced inflammation in rats. Peptides. septiembre de
2001;22(9):1479-84. | |
dc.relation | Handy R L, Moore, P,K. A comparison of the effects of L-NAME, 7-NI and LNIL on carrageenan-induced hindpaw oedema and NOS activity. British journal
of pharmacology. marzo de 1998;123(6):1119-26. | |
dc.relation | Omote K Hazama, K, Kawamata, T, Kawamata, M, Nakayaka, Y, Toriyabe,
M, Namiki, A. Peripheral nitric oxide in carrageenan-induced inflammation. Brain
research. septiembre de 2001;912(2):171-5. | |
dc.relation | Guex J J, Perrin, M. Edema and leg volume: Methods of assessment.
Angiology. 2000;51(1):9-12. | |
dc.relation | Rabe E Stücker, M, Ottillinger, B. Water displacement leg volumetry in clinical
studies-A discussion of error sources. BMC Medical Research Methodology.
2010;10. | |
dc.relation | Satyam S M, Bairy, K,L, Musharraf, S, Fernandes, D,L. Inhibition of croton oilinduced oedema in rat ear skin by topical nicotinamide gel. Pharmacologyonline.
2014;3:22-5. | |
dc.relation | Gábor M. The mouse ear as a model for cutaneous irritation. Journal of
Toxicology - Cutaneous and Ocular Toxicology. 2002;21(3):191-202. | |
dc.relation | De Bernardis E Leonardi, G, Caruso, A, Cutili, V,M,C, Amico-Roxas, M.
Protective effects of papaverine salicylate in mouse ear dermatitis and PAFinduced rat paw oedema. Agents and Actions. 1994;42(1):29-33. | |
dc.relation | Otsuka A Kabashima, K. Contribution of basophils to cutaneous immune
reactions and Th2-mediated allergic responses. Frontiers in Immunology.
2015;6(August):1-6. | |
dc.relation | Saeki K Satoh, T, Yokozeki, H. Alpha(1,3) Fucosyltransferases IV and VII are
essential for the initial recruitment of basophils in chronic allergic inflammation.
The Journal of investigative dermatology. septiembre de 2013;133(9):2161-9. | |
dc.relation | Nakashima Ch Otsuka, A, Kitoh, A, Honda, T, Egawa, G, Nakajima, S,
Nakamizo, S, Arita, M, Kubo, M, Miyachi, Y, Kabashima, K. Basophils regulate
the recruitment of eosinophils in a murine model of irritant contact dermatitis. The
Journal of allergy and clinical immunology. julio de 2014;134(1):100-7. | |
dc.relation | Sugimoto M A, Sousa, L,P, Pinho, V, Perretti, M, Teixeira, M,M. Resolution of
inflammation: What controls its onset? Frontiers in immunology. 2016;7:160. | |
dc.relation | Hoffmann A Leung, T,H, Baltimore, D. Genetic analysis of NF-kappaB/Rel
transcription factors defines functional specificities. The EMBO journal. octubre
de 2003;22(20):5530-9. | |
dc.relation | Wang V Y,F, Huang, W, Asagiri, M, Spann, N, Hoffmann, A, Glass, Ch,
Ghosh, G. The transcriptional specificity of NF-kappaB dimers is coded within
the kappaB DNA response elements. Cell reports. octubre de 2012;2(4):824-39. | |
dc.relation | if functions as an enhancer for nontypeable H. influenzae-induced DEFB4
regulation in epithelial cells. Biochemical and biophysical research
communications. enero de 2014;443(3):1035-40. | |
dc.relation | Bohuslav J Kravchenko, V,V, Parry, G,C, Erlich, J,H, Gerondakis, S,
Mackman, N, Ulevitch, R,J. Regulation of an essential innate immune response
by the p50 subunit of NF-kappaB. The Journal of clinical investigation. noviembre
de 1998;102(9):1645-52. | |
dc.relation | Ma X Y, Wang, H, Ding, B, Zhong, H, Ghosh, S, Lengyel, P. The interferoninducible p202a protein modulates NF-kappaB activity by inhibiting the binding
to DNA of p50/p65 heterodimers and p65 homodimers while enhancing the
binding of p50 homodimers. The Journal of biological chemistry. junio de
2003;278(25):23008-19. | |
dc.relation | Biswas S K, Mantovani, A. Macrophage plasticity and interaction with
lymphocyte subsets: Cancer as a paradigm. Nature immunology. octubre de
2010;11(10):889-96. | |
dc.relation | Aparicio-Soto M Alarcon de la Lastra, C, Cardeno, A, Sánchez-Fidalgo, S,
Sánchez-Hidalgo, M. Melatonin modulates microsomal PGE synthase 1 and NFE2-related factor-2-regulated antioxidant enzyme expression in LPS-induced
murine peritoneal macrophages. British journal of pharmacology. enero de
2014;171(1):134-44. | |
dc.relation | Lardone P J, Carrillo-Vico, A, Naranjo, M,C, De Felipe, B, Vallejo, A, Karasek,
M, Guerrero, J,M. Melatonin synthesized by Jurkat human leukemic T cell line is
implicated in IL-2 production. Journal of cellular physiology. enero de
2006;206(1):273-9. | |
dc.relation | Criollo A Senovilla, L, Authier, H, Maiuri, M,Ch, Morselli, E, Vitale, I, Kepp, O,
Tasdemir, E, Galluzzi, L, Shen, Sh, Tailler, M, Delahaye, N, Tesniere, A, De
Stefano, D, Younes, A,B, Harper F, Pierron G, Lavandero S, Zitvogel L, Israel A,
et al. The IKK complex contributes to the induction of autophagy. The EMBO
journal. febrero de 2010;29(3):619-31. | |
dc.relation | Greten F R, Arkan, M,C, Bollrath, J, Hsu, Li-Ch, Goode, J, Miething, C,
Goktuna, S,I, Neuenhahn, M, Fierer, J, Paxian, S, Van Rooijen, N, Xu, Y, O’Cain,
T, Jaffee, B,B, Busch, D,H, Duyster J, Schmid RM, Eckmann L, Karin M. NFkappaB is a negative regulator of IL-1beta secretion as revealed by genetic and
pharmacological inhibition of IKKbeta. Cell. septiembre de 2007;130(5):918-31. | |
dc.relation | Belasco J. mRNA degradation in prokaryotic cells: An overview. En: Control
of Messenger RNA Stability. 2012. p. 517. | |
dc.relation | Anderson P. Post-transcriptional regulons coordinate the initiation and
resolution of inflammation. Nature reviews Immunology. enero de 2010;10(1):24-
35. | |
dc.relation | Anderson P. Post-transcriptional control of cytokine production. Nature
immunology. abril de 2008;9(4):353-9. | |
dc.relation | Boldin M P, Baltimore, D. MicroRNAs, new effectors and regulators of NFkappaB. Immunological reviews. marzo de 2012;246(1):205-20. | |
dc.relation | Taganov K D, Boldin, M,P, Chang, K,J, Baltimore, D. NF-kappaB-dependent
induction of microRNA miR-146, an inhibitor targeted to signaling proteins of
innate immune responses. Proceedings of the National Academy of Sciences of
the United States of America. agosto de 2006;103(33):12481-6. | |
dc.relation | O’Connell R M, Rao, D,S, Chaudhuri, A,A, Baltimore, D. Physiological and
pathological roles for microRNAs in the immune system. Nature reviews
Immunology. febrero de 2010;10(2):111-22. | |
dc.relation | Etzrodt M Cortez-Retamozo, V, Newton, A, Zhao, J, Ng, A, Wildgruber, M,
Romero, P, Wurdinger, T, Xavier, R, Geissmann, F, Meylan, E, Nahrendorf, M,
Swirski, F,K, Baltimore, D, Weissleder, R, Pittet, M,J. Regulation of monocyte
functional heterogeneity by miR-146a and Relb. Cell reports. abril de
2012;1(4):317-24. | |
dc.relation | Vallabhapurapu S Karin, M. Regulation and function of NF-kappaB
transcription factors in the immune system. Annual review of immunology.
2009;27:693-733. | |
dc.relation | Besedovsky H del Rey, A, Sorkin, E, Dinarello, C,A. Immunoregulatory
feedback between interleukin-1 and glucocorticoid hormones. Science (New
York, NY). agosto de 1986;233(4764):652-4. | |
dc.relation | Ortega-Gómez A Perretti, M, Soehnlein, O. Resolution of inflammation: An
integrated view. EMBO molecular medicine. mayo de 2013;5(5):661-74. | |
dc.relation | Vacchini A Locati, M, Borroni, E,M. Overview and potential unifying themes
of the atypical chemokine receptor family. Journal of leukocyte biology. junio de
2016;99(6):883-92 | |
dc.relation | Bamias G Corridoni, D, Pizarro, T, Cominelli, F. New insights into the
dichotomous role of innate cytokines in gut homeostasis and inflammation.
Cytokine. septiembre de 2012;59(3):451-9 | |
dc.relation | Ouyang W Rutz, S, Crellin, N,K, Valdez, P,A, Hymowitz, S,G. Regulation and
functions of the IL-10 family of cytokines in inflammation and disease. Annual
review of immunology. 2011;29:71-109. | |
dc.relation | Saraiva M O’Garra, A. The regulation of IL-10 production by immune cells.
Nature reviews Immunology. marzo de 2010;10(3):170-81. | |
dc.relation | Samuelsson B. Role of basic science in the development of new medicines:
Examples from the eicosanoid field. The Journal of biological chemistry. marzo
de 2012;287(13):10070-80. | |
dc.relation | Medzhitov R. Inflammation 2010: New adventures of an old flame. Cell. marzo
de 2010;140(6):771-6 | |
dc.relation | Levy B D, Clish, C,B, Schmidt, B, Gronert, K, Serhan, C,N. Lipid mediator
class switching during acute inflammation: signals in resolution. Nature
immunology. julio de 2001;2(7):612-9. | |
dc.relation | Surh Y J, Na, H,K, Park, J,M, Lee, H,N, Kim, W, Yoon, I,S, Kim, D,D. 15-
Deoxy-Delta(1)(2),(1)(4)-prostaglandin J(2), an electrophilic lipid mediator of
anti-inflammatory and pro-resolving signaling. Biochemical pharmacology.
noviembre de 2011;82(10):1335-51. | |
dc.relation | Kim H Seo, J,Y, Kim, K,H. NF-kappaB and cytokines in pancreatic acinar
cells. Journal of Korean medical science. agosto de 2000;15 Suppl:S53-4. | |
dc.relation | Shibata T Kondo, M, Osawa, T, Shibata, N, Kobayashi, M, Uchida, K. 15-
deoxy-delta 12,14-prostaglandin J2. A prostaglandin D2 metabolite generated
during inflammatory processes. The Journal of biological chemistry. marzo de
2002;277(12):10459-66. | |
dc.relation | Bandeira-Melo C Serra, M,F, Díaz, B,L, Cordeiro, R,S, Silva, P,M, Lenzi, H,L,
Bakhle, Y,S, Serhan, C,N, Martins, M,A. Cyclooxygenase-2-derived
prostaglandin E2 and lipoxin A4 accelerate resolution of allergic edema in
Angiostrongylus costaricensis-infected rats: Relationship with concurrent
eosinophilia. Journal of immunology (Baltimore, Md : 1950). enero de
2000;164(2):1029-36. | |
dc.relation | Gilroy D W, Colville-Nash, P,R, Willis, D, Chivers, J, Paul-Clark, M,J,
Willoughby, D,A. Inducible cyclooxygenase may have anti-inflammatory
properties. Nature medicine. junio de 1999;5(6):698-701. | |
dc.relation | Schwab J M, Chiang, N, Arita, M, Serhan, Ch,N. Resolvin E1 and protectin
D1 activate inflammation-resolution programmes. Nature. junio de
2007;447(7146):869-74. | |
dc.relation | Fukunaga K Kohli, P, Bonnans, C, Fredenburgh, L,E, Levy, B,D.
Cyclooxygenase 2 plays a pivotal role in the resolution of acute lung injury.
Journal of immunology (Baltimore, Md : 1950). abril de 2005;174(8):5033-9. | |
dc.relation | Headland S E, Norling, L,V. The resolution of inflammation: Principles and
challenges. Seminars in immunology. mayo de 2015;27(3):149-60. | |
dc.relation | Gresnigt M S, Joosten, L,A,B, Verschueren, I, van der Meer, J,W,M, Netea,
M,G, Dinarello, Ch,A, van de Veerdonk, F,L. Neutrophil-mediated inhibition of
proinflammatory cytokine responses. Journal of immunology (Baltimore, Md :
1950). noviembre de 2012;189(10):4806-15. | |
dc.relation | van der Meer J H,M, Netea, M,G, Dinarello, C,A. Modulation of muramyl
dipeptide stimulation of cytokine production by blood components. Clinical and
experimental immunology. junio de 2009;156(3):428-33. | |
dc.relation | Branzk N Papayannopoulos, V. Molecular mechanisms regulating NETosis in
infection and disease. Seminars in immunopathology. julio de 2013;35(4):513-
30. | |
dc.relation | Schauer Ch Janko, Ch, Munoz, L,E, Zhao, Y, Kienhofer, D, Frey, B, Lell, M,
Manger, B, Rech, J, Naschberger, E, Holmdahl, R, Krenn, V, Harrer, T, Jeremic,
I, Bilyy, R, Schett, G, Hoffmann, M, Herrmann, M. Aggregated neutrophil
extracellular traps limit inflammation by degrading cytokines and chemokines.
Nature medicine. mayo de 2014;20(5):511-7. | |
dc.relation | Kahlenberg J M, Carmona-Rivera, C, Smith, C,K, Kaplan, M,J. Neutrophil
extracellular trap-associated protein activation of the NLRP3 inflammasome is
enhanced in lupus macrophages. Journal of immunology (Baltimore, Md : 1950).
febrero de 2013;190(3):1217-26. | |
dc.relation | Garcia-Romo G S, Caielli, S, Vega, B, Connolly, J, Allantaz, F, Xu, Z, Punaro,
M, Baisch, J, Guiducci, C, Coffman, R,L, Barrat, F,J, Banchereau, J, Pascual, V.
Netting neutrophils are major inducers of type I IFN production in pediatric
systemic lupus erythematosus. Science translational medicine. marzo de
2011;3(73):73ra20. | |
dc.relation | Hakkim A Furnrohr, B,G, Amann, K, Laube, B, Abed, U,A, Brinkmann, V,
Herrmann, M, Voll, R,E, Zychlinsky, A. Impairment of neutrophil extracellular trap
degradation is associated with lupus nephritis. Proceedings of the National
Academy of Sciences of the United States of America. mayo de
2010;107(21):9813-8 | |
dc.relation | Huang H Tohme, S, Al-Khafaji, A,B, Tai, S, Loughran, P, Chen, L, Wang, S,
Kim, J, Billiar, T, Wang, Y, Tsung, A. Damage-associated molecular patternactivated neutrophil extracellular trap exacerbates sterile inflammatory liver
injury. Hepatology (Baltimore, Md). agosto de 2015;62(2):600-14. | |
dc.relation | Knight J S, Kaplan, M,J. Lupus neutrophils: «NET» gain in understanding
lupus pathogenesis. Current opinion in rheumatology. septiembre de
2012;24(5):441-50 | |
dc.relation | Chamilos, G, Sebasigari, R, Riccieri, V, Bassett, R, Amuro, H, Fukuhara, S,
Ito, T, Liu, Y,J, Gilliet, M. Neutrophils activate plasmacytoid dendritic cells by
releasing self-DNA-peptide complexes in systemic lupus erythematosus.
Science translational medicine. marzo de 2011;3(73):73ra19. | |
dc.relation | Podolska M J, Biermann, M,H,C, Maueröder, Ch, Hahn, J, Herrmann, M.
Inflammatory etiopathogenesis of systemic lupus erythematosus: An update.
Journal of Inflammation Research. 2015;8:161-71. | |
dc.relation | Corbin B D, Seeley, E,H, Raab, A, Feldmann, J, Miller, M,R, Torres, V,J,
Anderson, K,L, Dattilo, B,M, Dunman, P,M, Gerads, R, Caprioli, R,M, Nacken,
W, Chazin, W,J, Skaar EP. Metal chelation and inhibition of bacterial growth in
tissue abscesses. Science (New York, NY). febrero de 2008;319(5865):962-5. | |
dc.relation | Díaz-Ochoa V E, Jellbauer, S, Klaus, S, Raffatellu, M. Transition metal ions
at the crossroads of mucosal immunity and microbial pathogenesis. Frontiers in
cellular and infection microbiology. 2014;4:2. | |
dc.relation | Hood M I, Skaar, E,P. Nutritional immunity: Transition metals at the pathogenhost interface. Nature reviews Microbiology. julio de 2012;10(8):525-37. | |
dc.relation | Sohnle P G, Collins-Lech, C, Wiessner, J,H. The zinc-reversible antimicrobial
activity of neutrophil lysates and abscess fluid supernatants. The Journal of
infectious diseases. julio de 1991;164(1):137-42. | |
dc.relation | Brophy M B, Nakashige, T,G, Gaillard, A, Nolan, E,M. Contributions of the
S100A9 C-terminal tail to high-affinity Mn(II) chelation by the host-defense
protein human calprotectin. Journal of the American Chemical Society.
noviembre de 2013;135(47):17804-17 | |
dc.relation | Damo S M, Kehl-Fie, T,E, Sugitani, N, Holt, M,E, Rathi, S, Murphy, W,J,
Zhang, Y, Betz, Ch, Hench, L, Fritz, G, Skaar, E,P, Chazin, W,J. Molecular basis
for manganese sequestration by calprotectin and roles in the innate immune
response to invading bacterial pathogens. Proceedings of the National Academy
of Sciences of the United States of America. marzo de 2013;110(10):3841-6. | |
dc.relation | Hayden J A, Brophy, M,B, Cunden, L,S, Nolan, E,M. High-affinity manganese
coordination by human calprotectin is calcium-dependent and requires the
histidine-rich site formed at the dimer interface. Journal of the American
Chemical Society. enero de 2013;135(2):775-87. | |
dc.relation | Kehl-Fie T E, Chitayat, S, Hood, M,I, Damo, S, Restrepo, N, García, C, Munro,
K,A, Chazin, W,J, Skaar, E,P. Nutrient metal sequestration by calprotectin
inhibits bacterial superoxide defense, enhancing neutrophil killing of
Staphylococcus aureus. Cell host & microbe. agosto de 2011;10(2):158-64. | |
dc.relation | Loser K Vogl, T, Voskort, M, Lueken, A, Kupas, V, Nacken, W, Klenner, L,
Kuhn, A, Foell, D, Sorokin, L, Luger, T,A, Roth, J, Beissert, S. The toll-like
receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive
CD8+ T cells. Nature medicine. junio de 2010;16(6):713-7. | |
dc.relation | Vogl T Tenbrock, K, Ludwig, S, Leukert, N, Ehrhardt, Ch, van Zoelen, M,A,D,
Nacken, W, Foell, D, van der Poll, T, Sorg, C, Roth, J. Mrp8 and Mrp14 are
endogenous activators of Toll-like receptor 4, promoting lethal, endotoxininduced shock. Nature medicine. septiembre de 2007;13(9):1042-9. | |
dc.relation | Medzhitov R. Origin and physiological roles of inflammation. Nature. julio de
2008;454(7203):428-35. | |
dc.relation | Fadok V A, Bratton, D,L, Konowal, A, Freed, P,W, Westcott, J,Y, Henson,
P,M. Macrophages that have ingested apoptotic cells in vitro inhibit
proinflammatory cytokine production through autocrine/paracrine mechanisms
involving TGF-beta, PGE2, and PAF. The Journal of clinical investigation. febrero
de 1998;101(4):890-8. | |
dc.relation | Maderna P Yona, S, Perretti, M, Godson, C. Modulation of phagocytosis of
apoptotic neutrophils by supernatant from dexamethasone-treated macrophages
and annexin-derived peptide Ac(2-26). Journal of immunology (Baltimore, Md :
1950). marzo de 2005;174(6):3727-33. | |
dc.relation | Scannell M Flanagan, M,B, DeStefani, A, Wynne, K,J, Cagney, G, Godson,
C, Maderna, P. Annexin-1 and peptide derivatives are released by apoptotic cells
and stimulate phagocytosis of apoptotic neutrophils by macrophages. Journal of
immunology (Baltimore, Md : 1950). abril de 2007;178(7):4595-605. | |
dc.relation | Liu Y Cousin, J,M, Hughes, J, Van Damme, J, Seckl, J,R, Haslett, C,
Dransfield, I, Savill, J, Rossi, A,G. Glucocorticoids promote nonphlogistic
phagocytosis of apoptotic leukocytes. Journal of immunology (Baltimore, Md :
1950). marzo de 1999;162(6):3639-46. | |
dc.relation | Katakami Y Nakao, Y, Koizumi, T, Katakami, N, Ogawa, R, Fujita, T.
Regulation of tumour necrosis factor production by mouse peritoneal
macrophages: the role of cellular cyclic AMP. Immunology. agosto de
1988;64(4):719-24. | |
dc.relation | Chand N Eyre, P. Nonsteroidal anti-inflammatory drugs: A review. New
applications in hypersensitivity reactions of cattle and horses. Canadian journal
of comparative medicine Revue canadienne de médecine comparée.
1977;41(3):233-40. | |
dc.relation | Nakano J. The prostaglandins. Their effects on 14 clinical conditions.
Resident Staff Physician. 1973;93-106. | |
dc.relation | Willoughby DA Giroud, J,P, Rosa, M,D, Velo, G,P. The control of the
inflammatory response with special reference to the prostaglandins. In
prostaglandins and cyclic AMP. Biological Actions and Clinical Applications.
1973;187-206. | |
dc.relation | Williams T J, Morley, J. Prostaglandins as potentiators of increased vascular
permeability in inflammation. Nature. noviembre de 1973;246(5430):215-7. | |
dc.relation | Kaley G Weiner, R. Prostaglandin E-1: A potential mediator of the
inflammatory response. Annals of the New York Academy of Sciences. abril de
1971;180:338-50. | |
dc.relation | Ferreira SH, Moncada S, Vane JR. Proceedings: Potentiation by
prostaglandins of the nociceptive activity of bradykinin in the dog knee joint.
British journal of pharmacology. marzo de 1974;50(3):461P. | |
dc.relation | Ferreira S H, Moncada, S, Vane, J,R. Prostaglandins and the mechanism of
analgesia produced by aspirin-like drugs. British Journal of Pharmacology.
febrero de 1997;120(Suppl 1):401-12. | |
dc.relation | Ferreira SH, Vane JR. New Aspects of the Mode of Action of Nonsteroid AntiInflammatory Drugs. Annual Review of Pharmacology. abril de 1974;14(1):57-
73. | |
dc.relation | Sondergaard J Greaves, M,W. Prostaglandin E1: Effect on human cutaneous
vasculature and skin histamine. The British journal of dermatology. mayo de
1971;84(5):424-8. | |
dc.relation | Tauber A I, Kaliner, M, Stechschulte, D,J, Austen, K,F. Immunologic release
of histamine and slow reacting substance of anaphylaxis from human lung. V.
Effects of prostaglandins on release of histamine. Journal of immunology
(Baltimore, Md : 1950). julio de 1973;111(1):27-32. | |
dc.relation | Ford-Hutchinson A W, Smith, M,J, Walker, J,R. Proceedings: Chemotactic
activity of solutions of prostaglandin E1. British journal of pharmacology. marzo
de 1976;56(3):345P-346P. | |
dc.relation | Higgs G A, McCall, E, Youlten, L,J. A chemotactic role for prostaglandins
released from polymorphonuclear leucocytes during phagocytosis. British journal
of pharmacology. abril de 1975;53(4):539-46. | |
dc.relation | Flower R J. Drugs which inhibit prostaglandin biosynthesis. Pharmacological
reviews. marzo de 1974;26(1):33-67. | |
dc.relation | Vane J R, Botting, R,M. Mechanism of action of antiinflammatory drugs.
International journal of tissue reactions. 1998;20(1):3-15 | |
dc.relation | Eyre P Lewis, A,J. Production of kinins in bovine anaphylactic shock. British
journal of pharmacology. febrero de 1972;44(2):311-3. | |
dc.relation | Miller R L, Melmon, K,L. The related roles of histamine, serotonin and
bradykinin in the pathogenesis of inflammation. Series haematologica (1968).
1970;3(1):5-38. | |
dc.relation | Zachariae H S,J, Henningsen, J, Sondergaard, J, Wolf-Jurgensen, P. Plasma
kinins in inflammation-relation to other mediators and leukocytes. Scand J clin
lab Invest. 1969;24:85-96. | |
dc.relation | Miller R L, Melmon, K,L. Inflammatory disorders. Clinical Pharmacology.
1972;382-417. | |
dc.relation | Weissmann G. The role of lysosomes in inflammation and disease. Annual
review of medicine. 1967;18:97-112. | |
dc.relation | Chang Y H. Studies on phagocytosis. II. The effect of nonsteroidal antiinflammatory drugs on phagocytosis and on urate crystal-induced canine joint
inflammation. The Journal of pharmacology and experimental therapeutics.
octubre de 1972;183(1):235-44. | |
dc.relation | Ignarro L J. Preservation of structural integrity of liver lysosomes and
membrane-stabilizing action of anti-inflammatory drugs, catecholamines and cyclic adenosine monophosphate in isotonic salt media. Vol. 22. 1973. 1269–
1282 p. | |
dc.relation | Di Rosa M Papadimitriou, J,M, Willoughby, D,A. A histopathological and
pharmacological analysis of the mode of action of nonsteroidal anti-inflammatory
drugs. The Journal of pathology. diciembre de 1971;105(4):239-56. | |
dc.relation | McCall E Youlten, L,J,F. Prostaglandin E1 synthesis by phagocytosing rabbit
polymorphonuclear leucocytes; its inhibition by indomethacin and its role in
chemotaxis. J Physiol. 1973;98-100. | |
dc.relation | Berry P A, Collier, H,O. Bronchoconstrictor action and antagonism of a slowreacting substance from anaphylaxis of guinea-pig isolated lung. British journal
of pharmacology and chemotherapy. agosto de 1964;23:201-16 | |
dc.relation | Collier O J, Sweatman, W,J,F. Antagonism by fenamates of prostaglandin
F2a and of slow reacting substance on human bronchial muscle. Vol. 219. 1968.
864–865 p | |
dc.relation | Bluestone R. Rheumatoid Arthritis: Medical management. British Medical
Journal. 1970;4(5735):602-4 | |
dc.relation | Harrigan M R, Tuteja, S, Neudeck, B,L. Indomethacin in the management of
elevated intracranial pressure: A review. Journal of neurotrauma. septiembre de
1997;14(9):637-50. | |
dc.relation | Rasmussen M. Treatment of elevated intracranial pressure with
indomethacin: Friend or foe? Acta anaesthesiologica Scandinavica. marzo de
2005;49(3):341-50. | |
dc.relation | Roberts R G, Redman, J,W. Indomethacin: A review of its role in the
management of traumatic brain injury. Critical care and resuscitation : journal of
the Australasian Academy of Critical Care Medicine. diciembre de
2002;4(4):271-80 | |
dc.relation | Slavik R S, Rhoney, D,H. Indomethacin: A review of its cerebral blood flow
effects and potential use for controlling intracranial pressure in traumatic brain
injury patients. Neurological research. julio de 1999;21(5):491-9. | |
dc.relation | Jihyeung J Picinich, S,C, Yang, Zh, Zhao, Y, Suh, N, Kong, A,N, Yang, Ch.
Cancer-preventive activities of tocopherols and tocotrienols. Carcinogenesis.
2009;31(4):533-42. | |
dc.relation | Cook-Mills J M, McCary Ch A. Isoforms of vitamin E differentially regulate
inflammation. Endocrine, metabolic & immune disorders drug targets.
2010;10:348-66. | |
dc.relation | Ford E S, Schleicher, R,L, Mokdad, A,H, Ajani, U,A, Liu, S. Distribution of
serum concentrations of alpha-tocopherol and gamma-tocopherol in the US
population. The American journal of clinical nutrition. 2006;84(2):375-83. | |
dc.relation | Bauernfeind J B. Tocopherols in food. Vitamin E: A comprehensive treatise.
New York and Basel Ed, editor. 1980. 99–167 p. | |
dc.relation | Schneider C. Chemistry and biology of vitamin E. Molecular nutrition & food
research. enero de 2005;49(1):7-30. | |
dc.relation | Munteanu A Zingg, J,M, Azzi, A. Anti-atherosclerotic effects of vitamin E?
Myth or reality? Journal of Cellular and Molecular Medicine. 2004;8(1):59-76. | |
dc.relation | Morley S Cecchini, M, Zhang, W, Virgulti, A, Noy, N, Atkinson, J, Manor, D.
Mechanisms of ligand transfer by the hepatic tocopherol transfer protein. The
Journal of biological chemistry. junio de 2008;283(26):17797-804. | |
dc.relation | Qian J Morley, S, Wilson, K, Nava, P, Atkinson, J, Manor, D. Intracellular
trafficking of vitamin E in hepatocytes: The role of tocopherol transfer protein.
Journal of lipid research. octubre de 2005;46(10):2072-82. | |
dc.relation | Traber M G. Vitamin E regulatory mechanisms. Annual review of nutrition.
2007;27:347-62. | |
dc.relation | Sontag T J, Parker, R,S. Cytochrome P450 omega-hydroxylase pathway of
tocopherol catabolism. Novel mechanism of regulation of vitamin E status. The
Journal of biological chemistry. julio de 2002;277(28):25290-6. | |
dc.relation | Sontag T J, Parker, R,S. Influence of major structural features of tocopherols
and tocotrienols on their omega-oxidation by tocopherol-omega-hydroxylase.
Journal of lipid research. mayo de 2007;48(5):1090-8. | |
dc.relation | Chiku S Hamamura, K, Nakamura, T. Novel urinary metabolite of d-deltatocopherol in rats. Journal of lipid research. 1984;25(1):40-8. | |
dc.relation | Swanson J E, Ben, R,N, Burton, G,W, Parker, R,S. Urinary excretion of 2,7,
8-trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman is a major route of
elimination of gamma-tocopherol in humans. Journal of lipid research. abril de
1999;40(4):665-71 | |
dc.relation | Parker R S, Swanson, J,E. A novel 5’-carboxychroman metabolite of γtocopherol secreted by HepG2 cells and excreted in human urine. Biochemical
and Biophysical Research Communications. 2000;269(2):580-3. | |
dc.relation | Simon E J, Gross, C,S, Milhorat, A,T. The metabolism of vitamin E. I. The
absorption and excretion of d-alpha-tocopheryl-5-methyl-C14-succinate. The
Journal of biological chemistry. agosto de 1956;221(2):797-805. | |
dc.relation | Simon E. J. The metabolism of vitamin E. II. Purification and characterization
of urinary metabolites of alpha-tocopherol. The Journal of biological chemistry.
agosto de 1956;221(2):807-17. | |
dc.relation | Stocker R. The ambivalence of vitamin E in atherogenesis. Trends in
biochemical sciences. junio de 1999;24(6):219-23. | |
dc.relation | Cachia O Leger, C,L, Descomps, B. Monocyte superoxide production is
inversely related to normal content of alpha-tocopherol in low-density lipoprotein.
Atherosclerosis. junio de 1998;138(2):263-9. | |
dc.relation | Stocker R. The ambivalence of vitamin E in atherogenesis. Trends in
biochemical sciences. junio de 1999;24(6):219–223. | |
dc.relation | Keaney J F,Jr. Atherosclerosis: From lesion formation to plaque activation
and endothelial dysfunction. Molecular aspects of medicine. 2000;21(4-5):99-
166 | |
dc.relation | Serbinova E Kagan, V, Han, D, Packer, L. Free radical recycling and
intramembrane mobility in the antioxidant properties of alpha-tocopherol and
alpha-tocotrienol. Free radical biology & medicine. 1991;10(5):263-75. | |
dc.relation | Suzuki Y J, Packer, L. Inhibition of NF-kappa B activation by vitamin E
derivatives. Biochemical and biophysical research communications. mayo de
1993;193(1):277-83. | |
dc.relation | Cooney R V, Harwood, P,J, Franke, A,A, Narala, K, Sundstrom, A,K,
Berggren, P,O, Mordan, L,J. Products of gamma-tocopherol reaction with NO2
and their formation in rat insulinoma (RINm5F) cells. Free radical biology &
medicine. septiembre de 1995;19(3):259-69. | |
dc.relation | Cooney RV, Franke AA, Harwood PJ, Hatch-Pigott V, Custer LJ, Mordan LJ.
Gamma-tocopherol detoxification of nitrogen dioxide: superiority to alphatocopherol. Proceedings of the National Academy of Sciences. 1993;90(5):1771-
5. | |
dc.relation | Hoglen N C, Waller, S,C, Sipes, I,G, Liebler, D,C. Reactions of peroxynitrite
with gamma-tocopherol. Chemical research in toxicology. abril de
1997;10(4):401-7. | |
dc.relation | Jiang Q Lykkesfeldt, J, Shigenaga, M,K, Shigeno, E,T, Christen, S, Ames B
N. Gamma-tocopherol supplementation inhibits protein nitration and ascorbate
oxidation in rats with inflammation. Free radical biology & medicine. diciembre
de 2002;33(11):1534-42. | |
dc.relation | Goss S P, Hogg, N, Kalyanaraman, B. The effect of alpha-tocopherol on the
nitration of gamma-tocopherol by peroxynitrite. Archives of biochemistry and
biophysics. marzo de 1999;363(2):333-40. | |
dc.relation | Reiter E Jiang, Q, Christen, S. Anti-inflammatory properties of α- and γtocopherol. Nano. 2007;6(9):2166-71. | |
dc.relation | Boscoboinik D Szewczyk, A, Hensey, C, Azzi, A. Inhibition of cell proliferation
by alpha-tocopherol. Role of protein kinase C. The Journal of biological
chemistry. abril de 1991;266(10):6188-94. | |
dc.relation | Tasinato A Boscoboinik, D, Bartoli, G,M, Maroni, P, Azzi, A. d-alphatocopherol inhibition of vascular smooth muscle cell proliferation occurs at
physiological concentrations, correlates with protein kinase C inhibition, and is
independent of its antioxidant properties. Proceedings of the National Academy
of Sciences of the United States of America. diciembre de 1995;92(26):12190-4. | |
dc.relation | Ricciarelli R Tasinato, A, Clément, S, Ozer, N,K, Boscoboinik, D, Azzi, A.
Alpha-Tocopherol specifically inactivates cellular protein kinase C alpha by
changing its phosphorylation state. Biochemical Journal. agosto de 1998;334(Pt
1):243-9. | |
dc.relation | Wu D Liu, L, Meydani, M, Meydani, S,N. Vitamin E increases production of
vasodilator prostanoids in human aortic endothelial cells through opposing
effects on cyclooxygenase-2 and phospholipase A2. The Journal of nutrition.
agosto de 2005;135(8):1847-53. | |
dc.relation | Freedman J E, Farhat, J,H, Loscalzo, J, Keaney, J,F,Jr. Alpha-tocopherol
inhibits aggregation of human platelets by a protein kinase C-dependent
mechanism. Circulation. noviembre de 1996;94(10):2434-40. | |
dc.relation | Kempna P Reiter, E, Arock, M, Azzi, A, Zingg, J,M. Inhibition of HMC-1 mast
cell proliferation by vitamin E: Involvement of the protein kinase B pathway. The
Journal of biological chemistry. diciembre de 2004;279(49):50700-9. | |
dc.relation | Sury M D, Frese-Schaper, M, Muhlemann, M,K, Schulthess, F,T, Blasig, I,E,
Tauber, M,G, Shaw, S,G, Christen, S. Evidence that N-acetylcysteine inhibits
TNF-alpha-induced cerebrovascular endothelin-1 upregulation via inhibition of
mitogen- and stress-activated protein kinase. Free radical biology & medicine.
noviembre de 2006;41(9):1372-83. | |
dc.relation | Sugiyama S Kugiyama, K, Ogata, N, Doi, H, Ota, Y, Ohgushi, M, Matsumura,
T, Oka, H, Yasue, H. Biphasic regulation of transcription factor nuclear factorkappaB activity in human endothelial cells by lysophosphatidylcholine through
protein kinase C-mediated pathway. Arteriosclerosis, thrombosis, and vascular
biology. abril de 1998;18(4):568-76 | |
dc.relation | Devaraj S Jialal, I. Alpha-tocopherol decreases interleukin-1 beta release
from activated human monocytes by inhibition of 5-lipoxygenase.
Arteriosclerosis, thrombosis, and vascular biology. abril de 1999;19(4):1125-33. | |
dc.relation | Jiang Q Elson-Schwab, I, Courtemanche, C, Ames, B,N. Gamma-tocopherol
and its major metabolite, in contrast to alpha-tocopherol, inhibit cyclooxygenase
activity in macrophages and epithelial cells. Proceedings of the National Academy of Sciences of the United States of America. octubre de
2000;97(21):11494-9 | |
dc.relation | Christen S Woodall, A,A, Shigenaga, M,K, Southwell-Keely, P,T, Duncan,
M,W, Ames, B,N. Gamma-tocopherol traps mutagenic electrophiles such as
NO(X) and complements alpha-tocopherol: Physiological implications.
Proceedings of the National Academy of Sciences of the United States of
America. abril de 1997;94(7):3217-22 | |
dc.relation | O’Leary K A, de Pascual-Teresa, S, Needs, P,W, Bao, Y,P, O’Brien, N,M,
Williamson, G. Effect of flavonoids and vitamin E on cyclooxygenase-2 (COX-2)
transcription. Mutation research. julio de 2004;551(1-2):245-54. | |
dc.relation | Chan A C, Tran, K, Pyke, D,D, Powell, W,S. Effects of dietary vitamin E on
the biosynthesis of 5-lipoxygenase products by rat polymorphonuclear
leukocytes (PMNL). Biochimica et biophysica acta. octubre de
1989;1005(3):265-9. | |
dc.relation | Jiang Q Ames, B,N. Gamma-tocopherol, but not alpha-tocopherol, decreases
proinflammatory eicosanoids and inflammation damage in rats. FASEB journal :
official publication of the Federation of American Societies for Experimental
Biology. mayo de 2003;17(8):816-22. | |
dc.relation | Seong Y A, Hwang, D, Kim, G,D. The anti-inflammatory effect of gnaphalium
affine through inhibition of NF-κB and MAPK in lipopolysaccharide-stimulated
RAW264.7 cells and analysis of its phytochemical components. Cell
Biochemistry and Biophysics. 2016;74(3):407-17. | |
dc.relation | Brownlie R P, Brownrigg, N,J, Butcher, H,M, Garcia, R, Jessup, R, Lee, V,J,
Tunstall, S, Wayne, M,G. ZD1542, a potent thromboxane A2 synthase inhibitor
and receptor antagonist in vitro. British Journal of Pharmacology. diciembre de
1993;110(4):1600-6. | |
dc.relation | Fiddler G I, Lumley, P. Preliminary clinical studies with thromboxane synthase
inhibitors and thromboxane receptor blockers. A review. Circulation. enero de
1990;81(1 Suppl):I69-78; discussion I79–80. | |
dc.relation | de Beaux A C, Ross, J,A, Maingay, J,P, Fearon, K,C, Carter, D,C.
Proinflammatory cytokine release by peripheral blood mononuclear cells from
patients with acute pancreatitis. The British journal of surgery. agosto de
1996;83(8):1071-5. | |
dc.relation | Gukovskaya A S, Gukovsky, I, Zaninovic, V, Song, M, Sandoval, D,
Gukovsky, S, Pandol, S,J. Pancreatic acinar cells produce, release, and respond
to tumor necrosis factor-alpha. Role in regulating cell death and pancreatitis. The
Journal of clinical investigation. octubre de 1997;100(7):1853-62. | |
dc.relation | Norman J G, Fink, G,W, Denham, W, Yang, J, Carter, G, Sexton, C, Falkner,
J, Gower, W,R, Franz, M,G. Tissue-specific cytokine production during
experimental acute pancreatitis. A probable mechanism for distant organ
dysfunction. Digestive diseases and sciences. agosto de 1997;42(8):1783-8. | |
dc.relation | Rakonczay Z Jr, Hegyi, P, Takacs, T, McCarroll, J, Saluja, A,K. The role of
NF-kappaB activation in the pathogenesis of acute pancreatitis. Gut. febrero de
2008;57(2):259-67. | |
dc.relation | Alakurtti S Mäkelä, T, Koskimies, S, Yli-Kauhaluoma, J. Pharmacological
properties of the ubiquitous natural product betulin. European Journal of
Pharmaceutical Sciences. 2006;29(1):1-13. | |
dc.relation | Huguet A del Carmen Recio, M, Manez, S, Giner, R, Rios, J. Effect of
triterpenoids on the inflammation induced by protein kinase C activators,
neuronally acting irritants and other agents. European journal of pharmacology.
diciembre de 2000;410(1):69-81. | |
dc.relation | Bernard P Scior, T, Didier, B, Hibert, M, Berthon, J,Y. Ethnopharmacology
and bioinformatic combination for leads discovery: application to phospholipase
A(2) inhibitors. Phytochemistry. noviembre de 2001;58(6):865-74. | |
dc.relation | Flekhter O B, Boreko, E,I, Nigmatullina, L,R, Tret´yakova, E,V, Pavlova, N,I,
Baltina, L,A, Nikolaeva, S,N, Savinova, O,V, Galin, F,Z, Tolstikov, G,A. Synthesis
and antiviral activity of ureides and carbamates of betulinic acid and its
derivatives. Bioorganicheskaia khimiia. 2003;29(6):655-61. | |
dc.relation | Ying-Chih. L Hao-Yuan, Ch, Tai-Hung, H, Hsin-Wei, H, Yi-Hsuan, L, WenHuang, P. Analgesic and anti-inflammatory activities of Torenia concolor Lindley
var. formosana Yamazaki and betulin in mice. The American journal of Chinese
medicine. 2009;37(1):97-111. | |
dc.relation | Pandey Bh K, Rizvi, I,S. Markers of oxidative stress in erythrocytes during
aging in humans. Ann N Y Acad Sci. 2007;1100(1):373-82. | |
dc.relation | Fernández M A, de las Heras, B, García, M,D, Saenz, M,T, Villar, A. New
insights into the mechanism of action of the anti-inflammatory triterpene lupeol.
The Journal of pharmacy and pharmacology. noviembre de 2001;53(11):1533-
9. | |
dc.relation | Geetha T Varalakshmi, P, Latha, R,M. Effect of triterpenes from Crataeva
nurvala stem bark on lipid peroxidation in adjuvant induced arthritis in rats.
Pharmacological research. marzo de 1998;37(3):191-5. | |
dc.relation | Vasconcelos J F, Teixeira, M,M, Barbosa-Filho, J,M, Lucio, A,S,S,C, Almeida,
J,R,G,S, de Queiroz, L,P, Ribeiro-Dos-Santos, R, Soares, M,B,P. The
triterpenoid lupeol attenuates allergic airway inflammation in a murine model.
International immunopharmacology. septiembre de 2008;8(9):1216-21. | |
dc.relation | Yamashita K Lu, H, Lu, J, Chen, G, Yokoyama, T, Sagara, Y, Manabe, M,
Kodama, H. Effect of three triterpenoids, lupeol, betulin, and betulinic acid on the
stimulus-induced superoxide generation and tyrosyl phosphorylation of proteins
in human neutrophils. Clinica chimica acta; international journal of clinical
chemistry. noviembre de 2002;325(1-2):91-6. | |
dc.relation | Lee S H, Son, M,J, Ju, H,K, Lin, Ch,X, Moon, T,Ch, Choi, HG, Son, J,K,
Chang, H,W. Dual inhibition of cyclooxygenases-2 and 5-lipoxygenase by
deoxypodophyllotoxin in mouse bone marrow-derived mast cells. Biological &
pharmaceutical bulletin. junio de 2004;27(6):786-8. | |
dc.relation | Jin M Moon, T,Ch, Quan, Zh, Lee, E, Kim, Y,K, Yang, J,H, Suh, SJ, Jeong,
T,Ch, Lee, S,H, Kim, Ch-H, Chang, H,W. The naturally occurring flavolignan,
deoxypodophyllotoxin, inhibits lipopolysaccharide-induced iNOS expression
through the NF-kappaB activation in RAW264.7 macrophage cells. Biological &
pharmaceutical bulletin. julio de 2008;31(7):1312-5. | |
dc.relation | Khaled M Jiang, Zh,Zh, Zhang, L,Y. Deoxypodophyllotoxin: A promising
therapeutic agent from herbal medicine. Journal of Ethnopharmacology.
2013;149(1):24-34 | |
dc.relation | Quintans-Júnior L J, Souza, T,T, Leite, B,S, Lessa, N,M,N, Bonjardim, L,R,
Santos, M,R,V, Alves, P,B, Blank, A,F, Antoniolli, A,R. Phythochemical screening
and anticonvulsant activity of Cymbopogon winterianus Jowitt (Poaceae) leaf
essential oil in rodents. Phytomedicine : international journal of phytotherapy and
phytopharmacology. agosto de 2008;15(8):619-24. | |
dc.relation | Melo M S, Sena, L,C,S, Barreto, F,J,N, Bonjardim, L,R, Almeida, J,R,G,S,
Lima, J,T, De Sousa, D,P, Quintans-Júnior, L,J. Antinociceptive effect of
citronellal in mice. Pharmaceutical biology. abril de 2010;48(4):411-6. | |
dc.relation | Quintans-Júnior L J, Oliveira, M,G,B, Santana, M,F, Santana, M,T,
Guimaraes, A,G, Siqueira, J,S, De Sousa, D,P, Almeida, R,N. alpha-Terpineol
reduces nociceptive behavior in mice. Pharmaceutical biology. junio de
2011;49(6):583-6. | |
dc.relation | Hassan S B, Gali-Muhtasib, H, Goransson, H, Larsson, R. Alpha terpineol: A
potential anticancer agent which acts through suppressing NF-kappaB
signalling. Anticancer research. junio de 2010;30(6):1911-9. | |
dc.relation | Pino J A, Marbot, R, Fuentes, V. Characterization of volatiles in bullock’s heart
(Annona reticulata L.) fruit cultivars from Cuba. Journal of agricultural and food
chemistry. junio de 2003;51(13):3836-9. | |
dc.relation | Brand C Townley, S,L, Finlay-Jones, J,J, Hart, P,H. Tea tree oil reduces
histamine-induced oedema in murine ears. Inflammation research : official
journal of the European Histamine Research Society . [et al]. junio de
2002;51(6):283-9 | |
dc.relation | Peana A T, Moretti, M,D,L. Pharmacological activities and applications of
Salvia sclarea and Salvia desoleana essential oils. Studies in Natural Products
Chemistry. 2002;26(PART G):391-423. | |
dc.relation | Peana A T, Aquila, P,S,D, Panin, F, Serra, G, Pippia, P, Moretti, M,D,L. Antiinflammatory activity of linalool and linalyl acetate constituents of essential oils.
2002;721-6. | |
dc.relation | Elisabetsky E Brum, L,F, Souza, D,O. Anticonvulsant properties of linalool in
glutamate-related seizure models. Phytomedicine : international journal of
phytotherapy and phytopharmacology. mayo de 1999;6(2):107-13. | |
dc.relation | Huo M Cui, X, Xue, J, Chi, G, Gao, R, Deng, X, Guan, Sh, Wei, J, Soromou,
L,W, Feng, H, Wang, D. Anti-inflammatory effects of linalool in RAW 264.7
macrophages and lipopolysaccharide-induced lung injury model. Journal of
Surgical Research. 2013;180(1):e47-54. | |
dc.relation | Hartsel J A, Eades, J, Hickory, B, Makriyannis, A. Cannabis sativa and Hemp.
[Internet]. Elsevier Inc.; 2016. 735–754 p. Disponible en:
http://dx.doi.org/10.1016/B978-0-12-802147-7.00053-X | |
dc.relation | Yu L Yan, J, Sun, Zh. D-limonene exhibits anti-inflammatory and antioxidant
properties in an ulcerative colitis rat model via regulation of iNOS, COX-2, PGE2
and ERK signaling pathways. Molecular Medicine Reports. 2017;15(4):2339-46. | |
dc.relation | Chowdhury N U, Farooq, T, Abdullah, S, Mahadi, A,S,Hasan,M, Paran, T,Z,
Hasan, N, Mohib, M, Sagor, A,T,Alam,A. Matrix Metalloproteinases (MMP), a
major responsible downstream signaling molecule for cellular damage - A review.
2016;(2005):7-8. | |
dc.relation | Koeberle A, Werz O. Natural products as inhibitors of prostaglandin E2and
pro-inflammatory 5-lipoxygenase-derived lipid mediator biosynthesis.
Biotechnology Advances. 2018;36(6):1709-23. | |
dc.relation | Bursera simaruba. Garden & Forest 3. 1890;3(218):73-6. | |
dc.relation | Correa Q J, Bernal, H,Y. Especies vegetales promisorias de los países del
Convenio Andrés Bello. 1990; | |
dc.relation | Faggioli C E. Bioma. La naturaleza en tus manos. :92. | |
dc.relation | River Ch. CD® ( Sprague Dawley ) IGS Rat. 1997; | |
dc.relation | Jurupe H Iparraguirre, D, Pérez, I. Estudio de la actividad antiinflamatoria de
extractos de Baccharis lanceolata Kunth en animales de laboratorio. | |
dc.relation | Serhan Ch N, Brain, S,D, Buckley, Ch,D, Gilroy, D,W, Haslett, Ch, O’Neill,
L,A,J, Perretti, M, Rossi, A,G, Wallace, J,L. Resolution of inflammation: State of
the art, definitions and terms. FASEB journal : official publication of the
Federation of American Societies for Experimental Biology. febrero de
2007;21(2):325-32. | |
dc.relation | Ma X Becker Buscaglia, L,E, Barker, J,R, Li, Y. MicroRNAs in NF-kappaB
signaling. Journal of molecular cell biology. junio de 2011;3(3):159-66. | |
dc.relation | Dean R A, Cox, J,H, Bellac, C,L, Doucet, A, Starr, A,E, Overall, Ch,M.
Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+
CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: Potential role
of the macrophage in terminating polymorphonuclear leukocyte influx. Blood.
octubre de 2008;112(8):3455-64. | |
dc.relation | Riva M Källberg, E, Björk, P, Hancz, D, Vogl, T, Roth, J, Ivars, F, Leanderson,
T. Induction of nuclear factor-κB responses by the S100A9 protein is Toll-like
receptor-4-dependent. Immunology. 2012;137(2):172-82. | |
dc.relation | Traber M G. Vitamin E. Bowman BA and R RM, editor. Washington, DC.: ILSI
Press; 2006. 211–219 p. | |
dc.relation | Hunter S C, Cahoon, E,B. Enhancing vitamin E in oilseeds: unraveling
tocopherol and tocotrienol biosynthesis. Lipids. marzo de 2007;42(2):97-108. | |
dc.relation | Nabil Mohamed B Nicolau-Darimont, Ch, Jalil, B. Peltatin for the treatment of
chronic inflammatory disorders. [Internet]. Vol. 002. 2015. 354 p. Disponible en:
http://appft1.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=/netahtml/PTO/srchnu
m.html&r=1&f=G&l=50&s1=20150057344.PGNR.&OS=DN/20150057344&RS=
DN/20150057344 | |
dc.relation | Salvador Morán E. Papel del receptor nuclear PPARgamma en la inflamación
y la esteatosis hepática [PhD Thesis]. 2013. | |
dc.relation | Lintas C Balduzzi, A,M, Bernardini, M,P, Di Muccio, A. Distribution of
hydrocarbons in bovine tissues. Lipids. marzo de 1979;14(3):298-303. | |
dc.relation | Lee T H, Jung, M, Bang, M,H, Chung, D,K, Kim, J. Inhibitory effects of a
spinasterol glycoside on lipopolysaccharide-induced production of nitric oxide
and proinflammatory cytokines via down-regulating MAP kinase pathways and
NF-κB activation in RAW264.7 macrophage cells. International
Immunopharmacology. 2012;13(3):264-70 | |
dc.relation | Bani S Kaul, A, Khan, B, Ahmad, Sh,F, Suri, K,A, Gupta, B,D, Satti, N,K, Qazi,
G,N. Suppression of T lymphocyte activity by lupeol isolated from Crataeva
religiosa. Phytotherapy research : PTR. abril de 2006;20(4):279-87. | |
dc.relation | Yang E-J Yim, EY, Song, G, Kim, G,O, Hyun, Ch-G. Inhibition of nitric oxide
production in lipopolysaccharide-activated RAW 264.7 macrophages by Jeju
plant extracts. Interdisciplinary toxicology. diciembre de 2009;2(4):245-9. | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.subject | Plantas medicinales | |
dc.subject | Tratamiento de enfermedades | |
dc.subject | Metabolitos | |
dc.title | Modelo de uso de la planta medicinal Bursera Simaruba y su actividad antiinflamatoria | |