dc.creatorLópez, Jorge
dc.creatorPérez, Katherín
dc.creatorRojas, Eyberth
dc.creatorRodríguez, Saith
dc.creatorCalderón, Juan M.
dc.creatorWeitzenfeld, Alfredo
dc.date.accessioned2020-02-03T11:48:39Z
dc.date.accessioned2022-09-28T16:27:52Z
dc.date.available2020-02-03T11:48:39Z
dc.date.available2022-09-28T16:27:52Z
dc.date.created2020-02-03T11:48:39Z
dc.date.issued2014-03-13
dc.identifierhttp://hdl.handle.net/11634/21358
dc.identifierhttps://doi.org/10.1109/ICAR.2013.6766542
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3681333
dc.description.abstractIn this paper, we perform a comparison between classical PI+D control strategies with a fuzzy modified PI+D control. The fuzzy PI+D controller is a discrete-time version of the conventional PI+D controller, which has constant coefficients of self-tuned control gains. The proposed control strategies were tested using a mathematical model based on a bipedal platform robot called DARwIn-OP. A mathematical model was developed to emulate robot behavior and dynamical performance. It is a linear model based on non linear conditions. The main improvement of the fuzzy controller is its adaptive control capability, mainly error acquisition under disturbance situations. Computer simulations are shown to demonstrate fuzzy modified controller improvements over the classic PI+D controller applied on mathematical robot model.
dc.relationYussof, H.; Yamano, M.; Nasu, Y.; Mitobe, K. & Ohka, M. Obstacle Avoidance in Groping Locomotion of a Humanoid Robot, International Journal of Advanced Robotic Systems, Volume 2 pp.251-258, Number 3 2005
dc.relationI. Ha, Y. Tamura, H. Asama, J. Han and D. Hong. Development of Open Humanoid Platform DARwIn-OP. SICE Annual Conference 2011, Waseda University, Tokyo, Japan. September 2011.
dc.relationROBOTIS e-Manual V1.11.00 URL: http://darwinop.springnote.com/pages/7302051#toc_1. Revised on September 26 2012
dc.relationH. Liu, H. Wu, and F. Qian. Double inverted pendulum control based on support vector machines and fuzzy inference. Springer-Verlag Berlin Heidelberg, pp. 1124 – 1130, 2006.
dc.relationY. Breniere, C. Riberau. A double-inverted pendulum model for studying the adaptability of postural control to frequency during human stepping in place. Springer Verlang Biological Cybernetics Vol. 79, pp 337 - 345 .1998.
dc.relationH. Yussof. M. Ohka, M. Yamano and Y. Nasu: Navigation Strategy by Contact Sensing Interaction for a Biped Humanoid Robot. International Journal of Advanced Robotic Systems, Vol. 5, No. 2, 2008.
dc.relationC. Chevachereau, G. Bessinnet, G. Abba and Y. Aoustin. Bipedal Robots. Wiley, 2009
dc.relationM. Van de Panne, E. Fiume, and Z. G. Vranesic. A controller for the dynamic walk of a biped across variable terrain. Proceedings of the 31st Conference on Decision end Control. Tucson, Arizona. December 1992
dc.relationK. S. Tang, K. F. Man, G. Chen, and S. Kwong. An Optimal Fuzzy PID Controller. IEEE Transactions on industrial electronics. Vol.48, No 4, 2001
dc.relationW. M. Tang, G. Chen, and R. D. Lu, “A modified fuzzy PI controller for a flexible-joint robot arm with uncertainties,” Int. J. Fuzzy Sets Syst., vol. 118, pp. 109–119, 2001.
dc.relationE. Sanchez; L. Nuno, Y. Hsu, and C. Guanrong, “ Real Time Fuzzy Swing-up Control for an Underactuated Robot”, JCIS '98 Proceedings, vol 1, N.C., USA, 1998.
dc.relationM. Luyben and W. Luyben. Essentials of process control, McGraw-Hill, 1997
dc.relationD. Misir, H. A. Malki, and G. Chen, “Design and analysis of a fuzzy proportional-integral-derivative controller,” Int. J. Fuzzy Sets Systems, vol. 79, pp. 297–314, 1996
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia
dc.titleComparison between a fuzzy controller and classic controller applied to stabilize a humanoid robotic platform
dc.typeGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos


Este ítem pertenece a la siguiente institución