dc.contributorhttp://orcid.org/0000-0003-4173-6826
dc.contributorhttp://orcid.org/0000-0003-1417-8355
dc.contributorhttps://orcid.org/0000-0003-4149-6623
dc.contributorhttps://orcid.org/0000-0003-4173-6826
dc.contributorhttps://scholar.google.es/citations?user=qj7XoWUAAAAJ&hl=es
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001363349
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000254410
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001351444
dc.creatorRosado-Solano, Doris Natalia
dc.creatorBaron-Rodríguez, Mario Alberto
dc.creatorSanabria Florez, Pedro Luis
dc.creatorLuna-Parada, Luz Karime
dc.creatorPuerto-Galvis, Carlos Eduardo
dc.creatorZorro-Gonzalez, Andres Felipe
dc.creatorKouznetsov, Vladimir V.
dc.creatorVargas-Mendez, Leonor Yamile
dc.date.accessioned2020-05-19T15:43:16Z
dc.date.accessioned2022-09-28T16:16:25Z
dc.date.available2020-05-19T15:43:16Z
dc.date.available2022-09-28T16:16:25Z
dc.date.created2020-05-19T15:43:16Z
dc.date.issued2020-05-18
dc.identifierhttp://hdl.handle.net/11634/23290
dc.identifierhttps://doi.org/10.1021/acs.jafc.9b01067
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3679983
dc.description.abstractThe insecticidal and antifeedant activities of five 7-chloro-4-(1H-1,2,3-triazol-1-yl)quinoline derivatives were evaluated against the maize armyworm, Spodoptera f rugiperda (J.E. Smith). These hybrids were prepared through a coppercatalyzed azide alkyne cycloaddition (CuAAC, known as a click reaction) and displayed larvicidal properties with LD50 values below 3 mg/g insect, and triazolyl-quinoline hybrid 6 showed an LD50 of 0.65 mg/g insect, making it 2-fold less potent than methomyl, which was used as a reference insecticide (LD50 = 0.34 mg/g insect). Compound 4 was the most active antifeedant derivative (CE50 = 162.1 μg/mL) with a good antifeedant index (56−79%) at concentrations of 250−1000 μg/mL. Additionally, triazolyl-quinoline hybrids 4−8 exhibited weak inhibitory activity against commercial acetylcholinesterase from Electrophorus electricus (electric-eel AChE) (IC50 = 27.7 μg/mL) as well as low anti-ChE activity on S. f rugiperda larvae homogenate (IC50 = 68.4 μg/mL). Finally, molecular docking simulations suggested that hybrid 7 binds to the catalytic active site (CAS) of this enzyme and around the rim of the enzyme cavity, acting as a mixed (competitive and noncompetitive) inhibitor like methomyl. Triazolyl-quinolines 4−6 and 8 inhibit AChE by binding over the perimeter of the enzyme cavity, functioning as noncompetitive inhibitors. The results described in this work can help to identify lead triazole structures from click chemistry for the development of insecticide and deterrent products against S. f rugiperda and related insect pests
dc.relation(1) Gomiero, T. In Handbook on the Globalization of Agriculture; Robinson, G. M., Carson, D. A., Eds.; Edwar Elgar Publ.: Cheltenham, 2015; pp 77−105
dc.relation(2) Heckel, D. G. Science 2012, 337, 1612−1614.
dc.relation(3) Dawkar, V. V.; Chikate, Y. R.; Lomate, P. R.; Dholakia, B. B.; Gupta, V. S.; Giri, A. P. J. Proteome Res. 2013, 12, 4727−4737.
dc.relation(4) Lamberth, C.; Jeanmart, S.; Luksch, T.; Plant, A. Science 2013, 341, 742−746.
dc.relation(5) Sparks, T. C.; Lorsbach, B. Pest Manage. Sci. 2017, 73, 672−677.
dc.relation(6) Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E. J.; Fraga, C. A. M. Curr. Med. Chem. 2007, 14, 1829−1852.
dc.relation(7) Meunier, B. Acc. Chem. Res. 2008, 41, 69−77.
dc.relation(8) Bolognesi, M. L. Curr. Med. Chem. 2013, 20, 1639−1645.
dc.relation(9) Kathiravan, M. K.; Salake, A. B.; Chothe, A. S.; Dudhe, P. B.; Watode, R. P.; Mukta, M. S.; Gadhwe, S. Bioorg. Med. Chem. 2012, 20, 5678−5698
dc.relation(10) Musiol, R.; Serda, M.; Hensel-Bielowka, S.; Polanski, J. Curr. Med. Chem. 2010, 17, 1960−1973.
dc.relation(11) Kumar, S.; Kavitha, H. P. Mini-Rev. Org. Chem. 2013, 10, 40− 65.
dc.relation(12) Alam, M. S.; Kajiki, R.; Hanatani, H.; Kong, X.; Ozoe, F.; Matsui, Y.; Matsumura, F.; Ozoe, Y. J. Agric. Food Chem. 2006, 54, 1361−1372.
dc.relation(13) Beyer, M.; Klix, M. B.; Klink, H.; Verreet, J. A. J. Plant Dis. Prot. 2006, 113, 241−246.
dc.relation(14) Ribas e Ribas, D. A.; Spolti, P.; Del Ponte, E. M.; Donato, K. Z.; Schrekker, H.; Fuentefria, A. M. Braz. J. Microbiol. 2016, 47, 793− 799
dc.relation(15) Shang, X. F.; Morris Natschke, S. L.; Yang, G. Z.; Liu, Y. Q.; Guo, X.; Xu, X. S.; Goto, M.; Li, J. C.; Zhang, J. Y.; Lee, K. H. Med. Res. Rev. 2018, 38, 1614−1660
dc.relation(16) Sparks, A. N. Fla. Entomol. 1979, 62, 82−87.
dc.relation(17) Diez-Rodrigues, G. I.; Omoto, C. Neotrop. Entomol. 2001, 30, 311−316.
dc.relation(18) Morillo, F.; Notz, A. Metab. Brain Dis. 2001, 16, 79−83
dc.relation(19) Yu, S. J.; Nguyen, S. N.; Abo-Elghar, G. E. Pestic. Biochem. Physiol. 2003, 77, 1−11.
dc.relation(20) Carvalho, R. A.; Omoto, C.; Field, L. M.; Williamson, M. S.; Bass, C. PLoS One 2013, 8, No. e62268.
dc.relation(21) Togola, A.; Meseka, S.; Menkir, A.; Badu-Apraku, B.; Boukar, O.; Tamo, M.; Djouaka, R. ̀ Int. J. Environ. Res. Public Health 2018, 15, 849.
dc.relation(22) Goergen, G.; Kumar, P. L.; Sankung, S. B.; Togola, A.; Tamo, ̀ M. First report of outbreaks of the fall armyworm Spodoptera f rugiperda (JE Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS One 2016, 11, No. e0165632
dc.relation(23) Kouznetsov, V. V.; Vargas-Mendez, L. Y.; Zubkov, F. I. MiniRev. Org. Chem. 2016, 13, 488−503.
dc.relation(24) Singh, M. S.; Chowdhury, S.; Koley, S. Tetrahedron 2016, 72, 5257−5283.
dc.relation(25) Clarke, E. D. Bioorg. Med. Chem. 2009, 17, 4153−4159
dc.relation(26) Clarke, E. D.; Mallon, L. J. Modern Methods Crop. Protec. Res. 2013, 273−305.
dc.relation(27) Avram, S.; Funar-Timofei, S.; Borota, A.; Chennamaneni, S. R.; Manchala, A. K.; Muresan, S. J. Cheminf. 2014, 6, 42
dc.relation(28) Manallack, D. T. SAR and QSAR in Environ. Res. 2017, 28, 621−628.
dc.relation(29) Zhang, Y.; Lorsbach, B. A.; Castetter, S.; Lambert, W. T.; Kister, J.; Wang, N. X.; Klittich, C. J. R.; Roth, J.; Sparks, T. C.; Loso, M. R. Pest Manage. Sci. 2018, 74, 1979−1991.
dc.relation(30) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Delivery Rev. 1997, 23, 3−25.
dc.relation(31) Tice, C. M. Pest Manage. Sci. 2001, 57, 3−16
dc.relation(32) Vargas-Mendez, L. Y.; Sanabria-Flo ́ rez, P. L.; Saavedra-Reyes, ́ L. M.; Merchan-Arenas, D. R., Kouznetsov, V. V. Saudi J. Biol. Sci. 2018, DOI: 10.1016/j.sjbs.2018.09.010.
dc.relation(33) Kamiya, H.; Sueyoshi, S.; Miyahara, M.; Yanagimachi, K.; Nakashima, T. Chem. Pharm. Bull. 1980, 28, 1485−1490
dc.relation(34) Pereira, G. R.; Brandao, G. C.; Arantes, L. M.; de Oliveira, H. ̃ A., Jr.; de Paula, R. C.; do Nascimento, M. F. A.; dos Santos, F. M.; da Rocha, R. K.; Lopes, J. C. D.; de Oliveira, A. B. Eur. J. Med. Chem. 2014, 73, 295−309
dc.relation(35) Kiran, S. R.; Reddy, A. S.; Devi, P. S.; Reddy, K. J. Pest Manage. Sci. 2006, 62, 1116−1121.
dc.relation(36) Ellman, G. L.; Courtney, K.D.; Andres, V.; Featherstone, R. M. Biochem. Pharmacol. 1961, 7, 88−95.
dc.relation(37) Zhang, Y. BMC Bioinf. 2008, 9, 40
dc.relation(38) Roy, A.; Kucukural, A.; Zhang, Y. Nat. Protoc. 2010, 5, 725− 738.
dc.relation(39) Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. Nat. Methods 2015, 12, 7−8
dc.relation(40) Horn, H. W.; Swope, W. C.; Pitera, J. W.; Madura, J. D.; Dick, T. J.; Hura, G. L.; Head-Gordon, T. J. Chem. Phys. 2004, 120, 9665− 9678.
dc.relation9678. (41) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Proteins: Struct., Funct., Genet. 2006, 65, 712−725
dc.relation(42) Berendsen, H. J.; Van Der Spoel, D.; Van Drunen, R. Comput. Phys. Commun. 1995, 91, 43−56.
dc.relation(43) Lindahl, E.; Hess, B.; Van Der Spoel, D. J. Mol. Model. 2001, 7, 306−317.
dc.relation(44) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. J. Comput. Chem. 2005, 26, 1701−1718.
dc.relation(45) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995, 117, 5179−5197.
dc.relation(46) Trott, O.; Olson, A. J. J. Comput. Chem. 2010, 31, 455−461.
dc.relation(47) Butina, D.; Segall, M. D.; Frankcombe, K. Drug Discovery Today 2002, 7, S83−S88.
dc.relation(48) Wang, T.; Wu, M. B.; Zhang, R. H.; Chen, Z. J.; Hua, C.; Lin, J. P.; Yang, L. R. Curr. Top. Med. Chem. 2015, 16, 901−916
dc.relation(49) Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. J. Chem. Inf. Model. 2015, 55, 460−473
dc.relation(50) Lipinski, C. A. Drug Discovery Today: Technol. 2004, 1, 337− 341.
dc.relation(51) Muthukrishnan, S.; Merzendorfer, H.; Arakane, Y.; Kramer, K. J. In Comprehensive Molecular Insect Science; Gilberts, L. I., Ed.; Academic Press: London, 2012; pp 193−235.
dc.relation(52) Mikolajczyk, P.; Oberlander, H.; Silhacek, D. L.; Ishaaya, I.; Shaaya, E. Arch. Insect Biochem. Physiol. 1994, 25, 245−258.
dc.relation(53) Tajiri, R. Curr. Opin. Insect Sci. 2017, 19, 30−35.
dc.relation(54) Tak, J. H.; Isman, M. B. Sci. Rep. 2015, 5, 12690.
dc.relation(55) Gerolt, P. Mode of entry of oxime carbamates into insects. Pestic. Sci. 1972, 3, 43−55
dc.relation(56) Gerolt, P. Biol. Rev. 1983, 58, 233−274
dc.relation(57) Colovic, M. B.; Krstic, D. Z.; Lazarevic-Pasti, T. D.; Bondzic, A. M.; Vasic, V. M. Curr. Neuropharmacol. 2013, 11, 315−335.
dc.relation(58) Kamal, M. A. IUBMB Life 1997, 43, 1183−1193.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleSynthesis, Biological Evaluation and In Silico Computational Studies of 7‑Chloro-4-(1H‑1,2,3-triazol-1-yl)quinoline Derivatives: Search for New Controlling Agents against Spodoptera f rugiperda (Lepidoptera: Noctuidae) Larvae
dc.typeGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos


Este ítem pertenece a la siguiente institución