dc.contributorOrtíz Rico, Andrés Felipe
dc.contributorhttps://orcid.org/0000-0001-5272-4447
dc.contributorhttps://scholar.google.es/citations?user=OuVxcUgAAAAJ&hl=es
dc.contributorhttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000650579
dc.creatorLiscano Fierro, Juan Manuel
dc.date.accessioned2017-07-19T20:11:17Z
dc.date.available2017-07-19T20:11:17Z
dc.date.created2017-07-19T20:11:17Z
dc.date.issued2017
dc.identifierLiscano, J. (2017). Modelos mixtos para datos composicionales: una aplicación con resultados electorales en Colombia. (Trabajo de pregrado). Universidad Santo Tomás. Bogotá, Colombia.
dc.identifierhttp://hdl.handle.net/11634/4186
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractThe present work consists in the application of certain tools developed for the analysis of the compositional data. The purpose includes the revision of the theoretical aspects; the geometry of the simplex, the log-ratio methodology and aspects related to null components, as well as the development of a practical exercise taking into account the mentioned methodologies along with the statistical models, such as Dirichlet regression, a multivariate linear model and nally the multivariate mixed model, which is the main axis of the exercise. It illustrates the practical application of the theory making use of the available information about the electoral processes carried out in Colombia and other variables that de ne the economic and political situation of the country. The results of the data analyzed under the adjustment of the mixed model respond in the best way to the real values of the plebiscite, identifying how the variables worked in uence the results of the voting. Suggesting that departments with more social problems are more in favor of peace.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Estadística
dc.publisherFacultad de Estadística
dc.relationAitchison, J. (1986), ‘The statistical analysis of compositional data’.
dc.relationAitchison, J., Barcel´o-Vidal, C., Mart´ın-Fern´andez, J. & Pawlowsky-Glahn, V. (2000), ‘Logratio analysis and compositional distance’, Mathematical Geology 32(3), 271–275.
dc.relationBarton, K. (2016), MuMIn: Multi-Model Inference. R package version 1.15.6. *https://CRAN.R-project.org/package=MuMIn
dc.relationBates, D., M¨achler, M., Bolker, B. & Walker, S. (2015), ‘Fitting linear mixed-effects models using lme4’, Journal of Statistical Software 67(1), 1–48.
dc.relationBillheimer, D., Guttorp, P. & Fagan, W. F. (2001), ‘Statistical interpretation of species composition’, Journal of the American statistical Association 96(456), 1205–1214.
dc.relationBroyden, C. G. (1970), ‘The convergence of a class of double-rank minimization algorithms 1. general considerations’, IMA Journal of Applied Mathematics 6(1), 76–90.
dc.relationBuccianti, A., Montegrossi, G., Tassi, F. & Vaselli, O. (2002), ‘Log-contrast analysis of volcanic fluid composition: a way to check equilibrium conditions’, Terra Nostra, special issue: IAMG 2, 405–410.
dc.relationChrist, A. (2009), ‘Mixed effects models and extensions in ecology with r’.
dc.relationEgozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G. & Barcelo-Vidal, C. (2003), ‘Isometric logratio transformations for compositional data analysis’, Mathematical Geology 35(3), 279–300.
dc.relationFletcher, R. (1970), ‘A new approach to variable metric algorithms’, The computer journal 13(3), 317– 322.
dc.relationGoldfarb, D. (1970), ‘A family of variable-metric methods derived by variational means’, Mathematics of computation 24(109), 23–26.
dc.relationGueorguieva, R., Rosenheck, R. & Zelterman, D. (2008), ‘Dirichlet component regression and its applications to psychiatric data’, Computational statistics & data analysis 52(12), 5344–5355.
dc.relationHenningsen, A. & Toomet, O. (2011), ‘maxlik: A package for maximum likelihood estimation in R’, Computational Statistics 26(3), 443–458. *http://dx.doi.org/10.1007/s00180-010-0217-1
dc.relationHijazi, R. H. & Jernigan, R. W. (2009), ‘Modelling compositional data using dirichlet regression models’, Journal of Applied Probability & Statistics 4(1), 77–91.
dc.relationMaier, M. J. (2014), Dirichletreg: Dirichlet regression for compositional data in r, Research Report Series/ Department of Statistics and Mathematics 125, WU Vienna University of Economics and Business, Vienna. *http://epub.wu.ac.at/4077/
dc.relationMaier, M. J. (2015), DirichletReg: Dirichlet Regression in R. R package version 0.6-3. *http://dirichletreg.r-forge.r-project.org/
dc.relationM´arquez, J., Aparicio, F. et al. (2011), ‘Modelos estad´ısticos para sistemas electorales multipartidistas en stata’, Stata Press book chapters .
dc.relationPawlowsky-Glahn, V. & Buccianti, A. (2011), Compositional data analysis: Theory and applications, John Wiley & Sons.
dc.relationPawlowsky-Glahn, V. & Egozcue, J. J. (2001), ‘Geometric approach to statistical analysis on the simplex’, Stochastic Environmental Research and Risk Assessment 15(5), 384–398.
dc.relationPearson, K. (1896), ‘Mathematical contributions to the theory of evolution.–on a form of spurious correlation which may arise when indices are used in the measurement of organs’, Proceedings of the royal society of london 60(359-367), 489–498.
dc.relationR Core Team (2016), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. *https://www.R-project.org/
dc.relationShanno, D. F. (1970), ‘Conditioning of quasi-newton methods for function minimization’, Mathematics of computation 24(111), 647–656.
dc.relationSmithson, M. & Verkuilen, J. (2006), ‘A better lemon squeezer? maximum-likelihood regression with beta-distributed dependent variables.’, Psychological methods 11(1), 54.
dc.relationTempl, M., Hron, K. & Filzmoser, P. (2011), robCompositions: an R-package for robust statistical analysis of compositional data, John Wiley and Sons.
dc.relationThomas, C. & Aitchison, J. (1998), The use of logratios in subcompositional analysis and geochemical discrimination of metamorphosed limestones from the northeast and central scottish highlands, in ‘Proceedings of IAMG98, The Fourth Annual Conference of the International Association for Mathematical Geology, De Frede, Naples’, pp. 549–554.
dc.relationTolosana-Delgado, R., Palomera-Rom´an, R., Gimeno-Torrente, D., Pawlowsky-Glahn, V. & Thi´oHenestrosa, S. (2002), ‘A first approach to the classification of basalts using trace elements’, See Bayer, Burger, and Skala pp. 435–440.
dc.relationVan den Boogaart, K. G. & Tolosana-Delgado, R. (2013), Analyzing compositional data with R, Vol. 122, Springer.
dc.relationWeltje, G. J. (2002), ‘Quantitative analysis of detrital modes: statistically rigorous confidence regions in ternary diagrams and their use in sedimentary petrology’, Earth-Science Reviews 57(3), 211–253.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleModelos mixtos para datos composicionales: Una aplicacion con resultados electorales en Colombia


Este ítem pertenece a la siguiente institución