dc.contributorCruz Pérez, Andrés
dc.contributorPerdomo Charry, Oscar Julián
dc.contributorhttps://orcid.org/0000-0003-2134-0058
dc.contributorhttps://orcid.org/0000-0001-9493-2324
dc.contributorhttps://scholar.google.com/citations?user=e6Oad5sAAAAJ&hl=en
dc.contributorhttps://scholar.google.es/citations?user=8vDWWJYAAAAJ&hl=es
dc.contributorhttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001525346
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001334129
dc.contributorUniversidad Santo Tomás
dc.creatorHuertas Mora, Alexander
dc.date.accessioned2020-09-18T21:23:10Z
dc.date.available2020-09-18T21:23:10Z
dc.date.created2020-09-18T21:23:10Z
dc.date.issued2020-09-17
dc.identifierHuertas Mora, A. (2020). Algoritmos de aprendizaje supervisado utilizando datos de monitoreo de condiciones: un estudio para el pronóstico de fallas en máquinas. [Tesis de maestría, Universidad Santo Tomás Colombia]. Repositorio Institucional
dc.identifierhttp://hdl.handle.net/11634/29886
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractThis paper provides an overview of some Machine Learning and Deep Learning methods as fundamental tools in detecting potential failures of physical assets using condition monitoring techniques, for this, in the first part supervised learning algorithms are applied for classification and regression in different case studies; comparing the performance of models demonstrates the effectiveness of deep neuronal networks LSTM, whose properties are of great value in sequential data processing and promise more powerful applications in maintenance engineering. In the second part effectiveness is argued by optimally adjusting the neural network architecture and implementing hybrid models that maximize model performance. In the third part describes and implements a Web application to put in production a model of classification of failures in bearings, the algorithm selected for the Web solution is Gradient Boosting due to the good performance with the data set and efficiency in the use of computational resources, with this development the end user access to the classification model is improved. Finally, a survival analysis method is applied with a statistical estimator, the purpose of which is to calculate the average life of the machine and the survival curves to compare the probability of failure during the time of operation of the physical asset.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherMaestría Estadística Aplicada
dc.publisherFacultad de Estadística
dc.relationAmendola, L. (2014). Gestión integral de activos físicos. Ediciones PMM institute for learning, Valencia.
dc.relationBorges, P. (2005). Análisis de supervivencia de pacientes con diálisis peritoneal. Revista Colombiana de Estadística, 28(2):243-259.
dc.relationBrownlee, J. (2017). Long Short-Term Memory Networks With Python: Develop Sequence Prediction Models With Deep Learning. Machine Learning Mastery.
dc.relationBrownlee, J. (2019). Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python. Machine Learning Mastery.
dc.relationBrownlee, J. (2020a). Imbalanced Classi_cation with Python: Choose Better Metrics, Balance Skewed Classes, and Apply Cost-Sensitive Learning. Machine Learning Mastery.
dc.relationBrownlee, J. (2020b). XGBoost With Python: Gradient Boosted Trees with XGBoost and Scikit-learn. Machine Learning Mastery.
dc.relationCaplice, C. (2017). Ctl.sc1x supply chain fundamentals v5.1. Technical report, MIT Center for Transportation Logistics, MITx MicroMasters in Supply Chain Management.
dc.relationMora, A. (2009). Mantenimiento planeación, ejecución y control. Alfaomega, Ciudad de México.
dc.relationMoore, D. (2016). Applied Survival Analysis Using R. Springer International Publishing, Edición de Kindle.
dc.relationSagar, A. (2019). How to easily deploy machine Learning models using flask. https://towardsdatascience.com/how-to-easily-deploy-machine-learning-models-using-flask-b95af8fe34d4, Web; accedido el 15-02-2020.
dc.relationArmes, T. y Refern, M. (2013). Using big data and predictive machine learning in aerospace test environments. IEEE AUTOTESTCON.
dc.relationBabu, P., Zhao, P., y Li, L. (2016). Deep convolutional neural network based regression approach for estimation of remaining useful life. Database Systems for Advanced Applications, 9642:214-228.
dc.relationBrik, B., Bettayeb, B., Sahnoun, M., y Duval, F. (2019). Towards predicting system disruption in industry 4.0: Machine learning-based approach. Procedia Computer Science, 151:667-674.
dc.relationChen, C., Liu, Y., Sun, X., Cairano, C., y Titmus, S. (2019). Automobile maintenance prediction using deep learning with gis data. Procedia CIRP, 81:447-452.
dc.relationEllefsen, A., Bjorlykhaug, E., Aesoy, V., Ushakov, S., y Zhang, H. (2019). Remaining useful life predictions for turbofan engine degradation using semisupervised deep architecture. Reliability Engineering and System Safety, 183:240-251.
dc.relationHuang, H. y Baddour, N. (2019). Bearing vibration data under time-varying rotational speed conditions. https://data.mendeley.com/datasets/v43hmbwxpm/2, Web-database; accedido el 12-12-2019.
dc.relationKassambara, A. (2018). Machine Learning Essentials: Guía práctica en R. Edición Kindle.
dc.relationKraus, M. y Feuerriegel, S. (2019). Forecasting remaining useful life: Interpretable deep learning approach via variational bayesian inferences. Decision Support Systems.
dc.relationLee, W., Wu, H., Yun, H., Kim, H., Jun, M., y Sutherland, J. (2019). Predictive maintenance of machine tool systems using arti_cial intelligence techniques applied to machine condition data. Procedia CIRP, 80:506-511.
dc.relationLindholm, A., Wahlstrom, N., Lindsten, F., y Schon, T. (2019). Supervised machine learning lecture notes for the statistical machine learning course. Technical report, Uppsala University.
dc.relationNASA (2008). Turbofan engine degradation simulation data set. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/, Webdatabase; accedido el 10-11-2019.
dc.relationOlson, R., La Cava, W., Mustahsan, Z., Varik, A., y Moorey, J. (2018). Data-driven advice for applying machine learning to bioinformatics problems. Technical report, Institute for Biomedical Informatics, University of Pennsylvania.
dc.relationPatel, A. (2018). Predictive maintenance using machine learning Microsoft casestudy. https://github.com/ashishpatel26/Predictive_Maintenance_using_ Machine-Learning_Microsoft_Casestudy/tree/master/data, Web-database; accedido el 30-07-2020.
dc.relationSaxena, A., Goebel, K., Simon, D., y Eklund, N. (2008). Damage propagation modeling for aircraft engine run-to-failure simulation. IEE International Conference on Prognostics and Health Management.
dc.relationVanderPlas, J. (2016). Python Data Science Handbook. O'Reilly Media, Inc, US.
dc.relationVardon, P. (2018). Prediciton de la panne d'une turbine - nasa. Technical report, Ecole Polytechnique.
dc.relationWu, Y., Yuan, M., Dong, S., Lin, L., y Liu, Y. (2018). Remaining useful life estimation of engineered systems using vanilla lstm neural networks. Neurocomputing, 275:167-179.
dc.relationZhang, J., Wang, P., Yan, R., y Gao, R. (2018). Deep learning for improved system remaining life prediction. Procedia CIRP, 72:1033-1038.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleAlgoritmos de aprendizaje supervisado utilizando datos de monitoreo de condiciones: un estudio para el pronóstico de fallas en máquinas.


Este ítem pertenece a la siguiente institución