dc.contributorTorres Pinzón, Carlos Andrés
dc.contributorMojica Casallas, Carlos Javier
dc.contributorRamírez Murillo, Harrynson
dc.contributorhttps://orcid.org/0000-0003-0367-8143
dc.contributorhttps://orcid.org/0000-0002-3757-9410
dc.contributorhttps://scholar.google.es/citations?user=gMAr7YEAAAAJ&hl=es
dc.contributorhttps://scholar.google.com/citations?user=r9kpTz0AAAAJ&hl=es
dc.contributorhttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000692670
dc.contributorhttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000639214
dc.contributorhttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001614550
dc.creatorNavarrete Gómez, Jhon Erik
dc.date.accessioned2021-02-02T19:32:47Z
dc.date.available2021-02-02T19:32:47Z
dc.date.created2021-02-02T19:32:47Z
dc.date.issued2021-01-29
dc.identifierNavarrete Gómez, J. E. (2020). Development of a platform using hardware in the loop technique to validate the dynamic behavior of a coupled-inductor buck-boost dc/dc converter [Tesis de Maestría en Ingeniería Electrónica, Universidad Santo Tomás] Repositorio Institucional
dc.identifierhttp://hdl.handle.net/11634/31764
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractBriefly explained, systems modeling is an equivalent exchange of variables such as Speed, precision and effort. When modeling a system, we may have to choose two of these three attributes, leaving one side. A model with a top level of precision and speed will always require an impressive deal of effort. The opposite is rare. This research project will implement a model on a Hardware in the Loop platform that allows improving the design and implementation times of Power Electronics prototypes.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherMaestría Ingeniería Electrónica
dc.publisherFacultad de Ingeniería Electrónica
dc.relationD. Biel, F. Guinjoan, E. Fossas, and J. Chavarria, “Sliding-mode control design of a boost-buck switching converter for AC signal generation,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 8, pp. 1539–1551, Aug. 2004, ISSN: 10577122. DOI: 10.1109/TCSI. 2004.832803.
dc.relationJ. Chen, D. Maksimovi´c, and R. W. Erickson, “Analysis and design of a low-stress buck-boost converter in universal-input PFC applications,” IEEE Transactions on Power Electronics, vol. 21, no. 2, pp. 320–329, Mar. 2006, ISSN: 08858993. DOI: 10.1109/TPEL.2005.869744.
dc.relationM. Gaboriault and A. Notman, “A high efficiency, non-inverting, buck-boost DC-DC converter,” in Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, vol. 3, 2004, pp. 1411–1415. DOI: 10.1109/apec.2004.1296049.
dc.relationP. C. Huang, W. Q. Wu, H. H. Ho, and K. H. Chen, “Hybrid buckboost feedforward and reduced average inductor current techniques in fast line transient and high-efficiency buckboost converter,” IEEE Transactions on Power Electronics, vol. 25, no. 3, pp. 719–730, 2010, ISSN: 08858993. DOI: 10.1109/TPEL.2009.2031803.
dc.relationB. Sahu and G. A. Rincon-Mora, “A low voltage, dynamic, noninverting, synchronous buckboost converter for portable applications,” IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 443–452, Mar. 2004, ISSN: 08858993. DOI: 10.1109/TPEL.2003.823196.
dc.relationY. J. Lee, A. Khaligh, and A. Emadi, “A compensation technique for smooth transitions in a noninverting buck-boost converter,” IEEE Transactions on Power Electronics, vol. 24, no. 4, pp. 1002–1015, 2009, ISSN: 08858993. DOI: 10.1109/TPEL.2008.2010044.
dc.relationY. J. Lee, A. Khaligh, A. Chakraborty, and A. Emadi, “Digital Combination of Buck and Boost Converters to Control a Positive Buck-Boost Converter and Improve the Output Transients,” IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1267–1279, 2009, ISSN: 19410107. DOI: 10.1109/TPEL.2009.2014066.
dc.relationE. Schaltz, P. O. Rasmussen, and A. Khaligh, “Non-inverting buck-boost converter for fuel cell applications,” in IECON Proceedings (Industrial Electronics Conference), IEEE Computer Society, 2008, pp. 855–860, ISBN: 9781424417667. DOI: 10.1109/IECON.2008.4758065.
dc.relationJ. K. Shiau, C. J. Cheng, and C. E. Tseng, “Stability analysis of a non-inverting synchronous buck-boost power converter for a solar power management system,” in 2008 IEEE International Conference on Sustainable Energy Technologies, ICSET 2008, 2008, pp. 263–268, ISBN: 9781424418886. DOI: 10.1109/ICSET.2008.4747014.
dc.relationO. Mourra, A. Fernandez, and F. Tonicello, “Buck boost regulator (B2R) for spacecraft solar array power conversion,” in Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2010, pp. 1313–1319, ISBN: 9781424447824. DOI: 10.1109/APEC.2010. 5433399.
dc.relationS. Waffler and J. W. Kolar, “A Novel Low-Loss Modulation Strategy for High-Power Bidirectional Buck + Boost Converters,” IEEE Transactions on Power Electronics, vol. 24, no. 6, pp. 1589–1599, 2009, ISSN: 19410107. DOI: 10.1109/TPEL.2009.2015881.
dc.relationX. Ren, X. Ruan, H. Qian, M. Li, and Q. Chen, “Three-mode dual-frequency two-edge modulation scheme for four-switch buck-boost converter,” IEEE Transactions on Power Electronics, vol. 24, no. 2, pp. 499–509, 2009, ISSN: 08858993. DOI: 10.1109/TPEL.2008.2005578.
dc.relationD. M. Sable, B. H. Cho, and R. B. Ridley, “Elimination of the positive zero in fixed frequency boost and flyback converters,” in Fifth Annual Proceedings on Applied Power Electronics Conference and Exposition, 1990, pp. 205–211. DOI: 10.1109/APEC.1990.66413.
dc.relationWei-Chung Wu, R. M. Bass, and J. R. Yeargan, “Eliminating the effects of the right-half plane zero in fixed frequency boost converters,” in PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196), vol. 1, May 1998, 362–366 vol.1. DOI: 10.1109/PESC.1998.701924.
dc.relationS.-K. E., F. A., M. E., E. J.B., E. V., C. J., and G. A., “Bidirectional High-Power High-Efficiency non-isolated step-up DC-DC Converter,” 2003.
dc.relationJ. Calvente, L. Martinez-Salamero, H. Valderrama, and E. Vidal-Idiarte, “Using magnetic coupling to eliminate right half-plane zeros in boost converters,” IEEE Power Electronics Letters, vol. 2, no. 2, pp. 58–62, 2004, ISSN: 15407985. DOI: 10.1109/LPEL.2004.834615.
dc.relationB. Poorali and E. Adib, “Right-Half-Plane Zero Elimination of Boost,” vol. 66, no. 11, pp. 8454– 8462, 2019.
dc.relationC. Restrepo, J. Calvente, A. Cid-Pastor, A. El Aroudi, and R. Giral, “A noninverting buck-boost dc-dc switching converter with high efficiency and wide bandwidth,” IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2490–2503, 2011, ISSN: 08858993. DOI: 10.1109/TPEL. 2011.2108668.
dc.relationC. Restrepo, S. Member, J. Calvente, A. Romero, E. Vidal-idiarte, R. Giral, and S. Member, “Current-Mode Control of a Coupled-Inductor Buck – Boost DC – DC Switching Converter,” vol. 27, no. 5, pp. 2536–2549, 2012.
dc.relationJ. Calvente, L. Martínez-Salamero, P. Garcés, and A. Romero, “Zero Dynamics-Based Design of Damping Networks for Switching Converters,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 4, pp. 1292–1303, 2003, ISSN: 00189251. DOI: 10.1109/TAES.2003. 1261129.
dc.relationC. Restrepo, T. Konjedic, J. Calvente, M. Milanoviˇc, and R. Giral, “Fast transitions between current control loops of the coupled-inductor buck-boost DC-DC switching converter,” IEEE Transactions on Power Electronics, vol. 28, no. 8, pp. 3648–3652, 2013, ISSN: 08858993. DOI: 10.1109/TPEL.2012.2231882.
dc.relationM. N. Alexander, Charles K. and Sadiku, Fundamentals of Electric Circuits, Fifth Edit. Cleveland, Ohio: McGraw-Hill, 2013, p. 905, ISBN: 978-0-07-338057-5.
dc.relationZ. Zhang, “Coupled-Inductor Magnetics,” Ph.D. dissertation, California Institute of Technology, 1987, p. 243.
dc.relationM. A. Mannah, A. Haddad, and H. Bazzi, “Hardware in the loop simulation for optimal management of electrical power converters,” 2014 International Conference on Renewable Energies for Developing Countries, REDEC 2014, pp. 43–48, 2014. DOI: 10.1109/REDEC.2014.7038529.
dc.relationW. Ren, M. Steurer, and S. Woodruff, “Progress and challenges in real time hardware-in-the loop simulations of integrated ship power systems,” 2005 IEEE Power Engineering Society General Meeting, vol. 1, pp. 534–537, 2005. DOI: 10.1109/pes.2005.1489721.
dc.relationA. Monti, H. Figueroa, S. Lentijo, X. Wu, and R. Dougal, “Interface issues in hardware-in-theloop simulation,” 2005 IEEE Electric Ship Technologies Symposium, vol. 2005, pp. 39–44, 2005. DOI: 10.1109/ESTS.2005.1524650.
dc.relationZ. Jiang, R. A. Dougal, R. Leonard, H. Figueroa, and A. Monti, “Hardware-in-the-loop testing of digital power controllers,” Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, vol. 2006, pp. 901–906, 2006. DOI: 10.1109/apec.2006.1620645.
dc.relationB. Lu, X. Wu, H. Figueroa, and A. Monti, “A low-cost real-time hardware-in-the-loop testing approach of power electronics controls,” IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 919–931, 2007, ISSN: 02780046. DOI: 10.1109/TIE.2007.892253.
dc.relationJ. Wu, Y. Cheng, A. K. Srivastava, N. N. Schulz, and H. L. Ginn, “Hardware in the Loop test for power system modeling and simulation,” 2006 IEEE PES Power Systems Conference and Exposition, PSCE 2006 - Proceedings, pp. 1892–1897, 2006. DOI: 10.1109/PSCE.2006. 296201.
dc.relationM. Steurer, F. Bogdan, W. Ren, M. Sloderbeck, and S. Woodruff, “Controller and power hardware-in-loop methods for accelerating renewable energy integration,” 2007 IEEE Power Engineering Society General Meeting, PES, pp. 44–47, 2007. DOI: 10.1109/PES.2007.386022.
dc.relationL. A. Gregoire, K. Al-Haddad, and G. Nanjundaiah, “Hardware-in-the-Loop (HIL) to reduce the development cost of power electronic converters,” India International Conference on Power Electronics, IICPE 2010, 2011. DOI: 10.1109/IICPE.2011.5728153.
dc.relationM. Lemaire, P. Sicard, and J. Belanger, “Prototyping and Testing Power Electronics Systems Using Controller Hardware-In-the-Loop (HIL) and Power Hardware-In-the-Loop (PHIL) Simulations,” 2015 IEEE Vehicle Power and Propulsion Conference, VPPC 2015 - Proceedings, pp. 2–7, 2015. DOI: 10.1109/VPPC.2015.7353000.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleDevelopment of a platform using hardware in the loop technique to validate the dynamic behavior of a coupled-inductor buck-boost dc/dc converter


Este ítem pertenece a la siguiente institución