dc.contributorMalagón, Dionisio Humberto
dc.contributorhttps://orcid.org/0000-0003-2890-2180
dc.contributorhttps://scholar.google.es/citations?user=b0ldFjcAAAAJ&hl=es
dc.contributorhttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000167061
dc.creatorCaro Rodríguez, Juan Felipe
dc.creatorAguirre Matínez, Cristian
dc.date.accessioned2019-05-14T20:19:35Z
dc.date.available2019-05-14T20:19:35Z
dc.date.created2019-05-14T20:19:35Z
dc.date.issued2019-04-03
dc.identifierCaro Rodríguez, J. F., & Aguirre Matínez, C. (2019). Desarrollo de un sistema de refrigeración por absorción a partir de energía solar térmica para la universidad santo tomás
dc.identifierhttp://hdl.handle.net/11634/16672
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractMost domestic refrigeration systems currently work with electricity through a vapor compression cycle of a refrigerant gas, due to this in the non-interconnected zones (ZNI) to the electric grid, where around 1.5 million of people lives, often give up having a fridge, these machines also represent the largest consumption in the Colombian energy matrix with around 30%. In order to provide an alternative for these people, a first prototype of a 30L refrigeration system that works from a thermodynamic absorption-diffusion cycle (DAR) was developed from a benchmarking study, patents and scientific articles. It requires a 22W heat source to operate which is supplied from a composite solar parabolic trough (CPC). The built-in refrigerator operates between 8-14 °C, with a COP of 0.02, and additionally a heat source that reaches 200 °C. The presented prototype makes to reconsider the importance of the DAR systems when raising that their COPs are low the systems are interesting since they work at a zero-energy cost, because the solar energy is free and is available everywhere. Keywords: domestic refrigeration, non-interconnected zones, absorption-diffusion, solar concentrator.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Ingeniería Mecánica
dc.publisherFacultad de Ingeniería Mecánica
dc.relationA. Siller, D., Kent, A., Shepherd, J., & Strong, R. ASHRAE Position Document on Ammonia as a Refrigerant (2013).
dc.relationAbdulkareem, W. S. (2017). US 2017/0082327 A1. Iraq. Retrieved from https://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=2017082327A1&KC=A1&FT=D&ND=&date=20170323&DB=&locale=
dc.relationUN SISTEMA DE ABSORCIÓN DOMÉSTICO A. (2015), (March).
dc.relationACAIRE. (2017). ACAIRE | ::: ACAIRE ::: Retrieved May 23, 2017, from http://acaire.org/
dc.relationAcuña, A., Velázquez, N., Sauceda, D., Rosales, P., Suastegui, A., & Ortiz, A. (2016). Influence of a compound parabolic concentrator in the performance of a solar diffusion absorption cooling system. Applied Thermal Engineering, 102, 1374–1383. https://doi.org/10.1016/j.applthermaleng.2016.03.061
dc.relationAli, M. (2015). Investigation the effects of different heat inputs supplied to the generator on the energy performance in diffusion absorption refrigeration systems tude des effets de diverses fournitures de chaleur a un Une e n e rateur sur la performance, 4(1928), 10–21.
dc.relationAliane, A., Abboudi, S., Seladji, C., & Guendouz, B. (2016). An illustrated review on solar absorption cooling experimental studies. https://doi.org/10.1016/j.rser.2016.07.012
dc.relationAly, W. I. A., Abdo, M., Bedair, G., & Hassaneen, A. E. (2017). Thermal performance of a diffusion absorption refrigeration system driven by waste heat from diesel engine exhaust gases. Applied Thermal Engineering, 114, 621–630. https://doi.org/10.1016/j.applthermaleng.2016.12.019
dc.relationAMOQUIMICOS Colombia S.A.S. (n.d.). www.amoquimicos.com. Retrieved November 17, 2018, from http://www.amoquimicos.com/agua-amoniaca
dc.relationAnil, P. A. (n.d.). Compound Parabolic Concentrator Parikh Aradhya Anil Roll No .: 10105066 Mechanical Engineering Department.
dc.relationAsociación Española de Pediatría (AEP) / Comité Asesor de Vacunas (CAV). (n.d.). Transporte y conservación de las vacunas | Comité Asesor de Vacunas de la AEP. Retrieved December 18, 2018, from https://vacunasaep.org/documentos/manual/cap-6
dc.relationAsociación Latinoamericana de QFD. (n.d.). Herramientas QFD. Retrieved May 18, 2017, from http://www.qfdlat.com/Herramientas_QFD/herramientas_qfd.html
dc.relationBaca, G. (2005). Ingenieria Economica. (C. Baca, Ed.). Bogota: Editorial educativa.
dc.relationBataineh, K., & Taamneh, Y. (2016). Review and recent improvements of solar sorption cooling systems. Energy and Buildings, 128, 22–37. https://doi.org/10.1016/j.enbuild.2016.06.075
dc.relationBaun, M., Biendarra, R., Fischer, T., Hinderer, S., & Ocker, L. (2012). DE 10 2011 003 973 A1. Deutchland. Retrieved from https://worldwide.espacenet.com/publicationDetails/originalDocument?CC=DE&NR=102011003973A1&KC=A1&FT=D&ND=&date=20120816&DB=&locale=
dc.relationBelman-Flores, J. M., & Rodríguez-Muñoz, J. L. (2015). Modelado del evaporador de un sistema difusión-absorción: análisis energético y efecto sobre el diseño de un frigobar. Revista Electrónica Nova Scientia Modelado, 7, 24–44.
dc.relationBelman-Flores, J. M., Rodríguez-Muñoz, J. L., Rubio-Maya, C., Ramírez-Minguela, J. J., & Pérez-García, V. (2014). Energetic analysis of a diffusion-absorption system: A bubble pump under geometrical and operational conditions effects. Applied Thermal Engineering, 71(1), 1–10. https://doi.org/10.1016/j.applthermaleng.2014.06.034
dc.relationBeltrán, R. G. (n.d.). Refrigerador Solar – Ciclo De Absorción Intermitente, 8. Retrieved from www.uniandes.edu.com
dc.relationBen Jemaa, R., Mansouri, R., Boukholda, I., & Bellagi, A. (2017). Experimental characterization and performance study of an ammonia–water–hydrogen refrigerator. International Journal of Hydrogen Energy, 42(13), 8594–8601. https://doi.org/10.1016/j.ijhydene.2016.06.150
dc.relationBérriz Pérez, L., & Álvarez González, M. (2008). Manual para el calculo y diseño de calentadores solares. (A. Montesinos Larrosa & L. Tagle Rodríguez, Eds.). La Habana: CUBASOLAR.
dc.relationBest, R., & Rivera, W. (2015). A review of thermal cooling systems. Applied Thermal Engineering, 75, 1162–1175. https://doi.org/10.1016/j.applthermaleng.2014.08.018
dc.relationCálculo de la posición del sol en el cielo para cada lugar en cualquier momento. (n.d.). Retrieved September 17, 2018, from https://www.sunearthtools.com/dp/tools/pos_sun.php#annual
dc.relationCaribe, M. A. R., Cauca, V., & Sol, H. De. (2014). Brasil Perú ©, 2014.
dc.relationCengel, Y. a., & Boles, M. E. (2011). Termodinamica - Cengel 7th. Termodinamica. Retrieved from http://www.mediafire.com/download/7a3idxrs2gxjbpu/Termodinamica+-+Cengel+7th.pdf
dc.relationCengel, Y. a., & Ghajar, A. J. (2011). Tranferencia de calor y masa 4a. ed. (3rd ed.).
dc.relationCerezo Roman, J. (2006). Estudio del proceso de absorcion con Amoniaco-agua en intercambiadores de placas para equipos de refrigeracion por absorcion. Escola tecnica superior d’enginyeria quimica.
dc.relationChemical Engineering and MAterials Research Information Center. (n.d.). 화학공학소재연구정보센터(CHERIC) | 연구정보 | KDB | Pure Component Properties. Retrieved November 21, 2018, from https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1526
dc.relationDefiniciones, B. S. Y. (2007). Anexo b. metodología de cálculo de espesores óptimos de aislamiento térmico b.1. símbolos y definiciones.
dc.relationDena. (2014). Energía solar térmica tecnologías y aplicaciones. Suministros de Energias Renovables Hecho En Alemania.
dc.relationDuffie, J. A., & Beckman, W. A. (2013). Solar Engineering of Thermal Processes (Fourth). New Jersey: John Wiley & Sons.
dc.relationENERGÍA SOLAR TÉRMICA 1. Introducción 1. (n.d.), 1–90.
dc.relationEngineering ToolBox. (2003). Vacuum Pressure - Units Converter. Retrieved February 1, 2019, from https://www.engineeringtoolbox.com/vacuum-converter-d_460.html
dc.relationFinkleman, H. (2016). US 2016/0195313 A1. Canada. Retrieved from https://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=2016195313A1&KC=A1&FT=D&ND=&date=20160707&DB=&locale=
dc.relationFLUIDLINE. (2017). Data sheet - Stailess steel tube, 2.
dc.relationFradette, R. (2016). Understanding Vacuum and Vacuum Measurement. Solar Atmospheres, Inc., 12. Retrieved from https://solarmfg.com/wp-content/uploads/2016/02/Understanding-Vacuum-9.pdf
dc.relationGreenpeace International, S. P. and S. (2009). Concentrating Solar Power Global Outlook 09. Power, 88.
dc.relationGunts Hamburg. (2006). Ingeniería de procesos térmicos, 21.
dc.relationHassan, H. Z., & Mohamad, A. A. (2012). A review on solar cold production through absorption technology. Renewable and Sustainable Energy Reviews, 16(7), 5331–5348. https://doi.org/10.1016/j.rser.2012.04.049
dc.relationHernandez V., O. (2017). Refrigeración por absorción de vapor Principio básico.
dc.relationHistoria | Dometic - Mobile living made easy. (n.d.). Retrieved August 30, 2017, from https://www.dometic.com/es-es/es/sobre-nosotros/nuestra-marca/historia
dc.relationHsiesh, C. K. (1981). Thermal analysis of CPC collectors, (Sol. Energy 27), 19–29.
dc.relationIDEAM. (n.d.). Mapa Solar Colombiano, 78. Retrieved from http://atlas.ideam.gov.co/basefiles/RadiacionSolar13.pdf
dc.relationIDEAM. (2015). Anexo: Promedios Mensuales De Irradiación Global Media Recibida En Superficie Para Las Principales Ciudades Del País, 99. Retrieved from http://atlas.ideam.gov.co/basefiles/Anexo-Promedios-mensuales-de-Irradiacion-Global-Media.pdf
dc.relationIDEAM - IDEAM. (n.d.). Retrieved September 17, 2018, from http://www.ideam.gov.co/
dc.relationInfante, C., & Kim, D. (2013). Techno-economic review of solar cooling technologies based on location-specific data 5 ´ conomique des technologies du froid Synthe ´ sur des donne ´ es spe ´ cifiques a ` la localisation solaire base. International Journal of Refrigeration, 39, 23–37. https://doi.org/10.1016/j.ijrefrig.2013.09.033
dc.relationIPSE (Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas). (n.d.). Quiénes somos. Retrieved August 30, 2017, from http://www.ipse.gov.co/informacion-institucional/ipse
dc.relationJakob, U. (2005). Investigations Into Solar Powered Diffusion- Absorption Cooling Machines S Olar P Owered D Iffusion-. Building.
dc.relationJunta de Andalucia. (n.d.). Montaje y mantenimiento de equipos de refrigeración comercial, 1–5. Retrieved from http://www.juntadeandalucia.es/averroes/centros-tic/21700502/moodle/file.php/77/2_Curso/0040._Montaje_y_mantenimiento_de_equipos_de_refrigeracion_comercial/Capitulo_III/Fuentes_de_agua_refrigerada_b.pdf
dc.relationKhan, M. M. A., Saidur, R., & Al-Sulaiman, F. A. (2017). A review for phase change materials (PCMs) in solar absorption refrigeration systems. Renewable and Sustainable Energy Reviews, 76(March), 105–137. https://doi.org/10.1016/j.rser.2017.03.070
dc.relationKim, D. S., & Infante Ferreira, C. A. (2008). Solar refrigeration options - a state-of-the-art review. International Journal of Refrigeration, 31(1), 3–15. https://doi.org/10.1016/j.ijrefrig.2007.07.011
dc.relationKITEK TECHNOLOGIES PVT. LTD. (2012). PCB Design Lab, Microprocessor Lab - Microcontroller Lab, Embedded Lab, Digital Lab, Programmer, Exporter. Retrieved May 23, 2017, from http://www.kitektechnologies.com/
dc.relationLas coordenadas geográficas de Bogotá. La latitud, la longitud y la altitud sobre el nivel del mar de Bogotá, Colombia. (n.d.). Retrieved August 22, 2018, from http://dateandtime.info/es/citycoordinates.php?id=3688689
dc.relationMansouri, R., Bourouis, M., & Bellagi, A. (2018). Steady state investigations of a commercial diffusion-absorption refrigerator: Experimental study and numerical simulations. Applied Thermal Engineering, 129, 725–734. https://doi.org/10.1016/j.applthermaleng.2017.10.010
dc.relationManuel, R. E. Z., & Gonz, L. (n.d.). Luis bérriz pérez manuel álvarez gonzález.
dc.relationMechanics, M. (2013). Energy and Exergy Analyses of Homogeneous, 17, 107–117. https://doi.org/10.2298/TSCI120105217F
dc.relationNational Center for Biotechnology Information. (n.d.). Methylene Chloride - Pubchem: open chemistry database. Retrieved from https://pubchem.ncbi.nlm.nih.gov/compound/6344
dc.relationNaugra Export. (2017). Educational Scientific Equipments Exporters,Laboratory Scientific Instruments Manufacturers, Naugra Export India. Retrieved May 23, 2017, from https://www.naugraexport.com/
dc.relationNavarrro, H., & Proexport. (2013). Logística En La Cadena De Frio, 1–35.
dc.relationNingbo Beilun Walla Electric Appliance Co., L. (2011). No Title. Retrieved January 1, 2017, from http://www.walla-hotel.com/
dc.relationPaquin, R. A. (n.d.). Properties of Metals.
dc.relationPara, C., & Convección, L. A. (n.d.). Xiii.- transmisión de calor por convección correlaciones para la convección natural y forzada, 225–256.
dc.relationPita, E. G. (1996). Principios y sistemas de refrigeracion - Edwar G Pita - Cap 13.pdf. In J. L. J. Padilla (Ed.), Principios y sistemas de refrigeración (Primera). New York: EDITORIAL LIMUSA, S.A.
dc.relationPlaten, Baltzer and Munters, G. (1928). Refrigeration US patent 1,685,764. US patent 1,685,764. https://doi.org/10.1180/0026461056950275
dc.relationPotgieter, M. C. (2013). The evaluation of a solar-driven aqua- ammonia diffusion absorption heating and cooling cycle, (September).
dc.relationPuerto, E. (2011). Presión atmosférica. McGraw-Hill/Interamericana. Retrieved from https://efrainpuerto.wordpress.com/2011/02/26/f1-2/
dc.relationRapin, P., & Jacquard, P. (1999). Installations Frigorifiques, Tome 2 - Technologie. (PYC-ÉDITION, Ed.). París: ALFAOMEGA GRUPO EDITOR, S.A. de C.V.
dc.relationRapin, P., & Jacquard, P. (2001). Formulaire du froid. (Dunod, Ed.). París: ALFAOMEGA GRUPO EDITOR, S.A. de C.V.
dc.relationREGIONAL, (CONFEDERACIÓN, EMPRESARIALES, D. O., & DE MURCIA). (2010). Carga física: factores de riesgo ergonómico y sus medidas preventivas. International Journal of Industrial Ergonomics, 17. Retrieved from http://www.croem.es/prevergo/formativo/3.pdf
dc.relationREGLAMENTO (CE) N o 643/2009. (n.d.). Retrieved from http://www.f2i2.net/documentos/lsi/Ecodiseno/Reglamento_643_2009.pdf
dc.relationRodríguez-Muñoz, J. L., & Belman-Flores, J. M. (2013). Review of diffusion–absorption refrigeration technologies. Renewable and Sustainable Energy Reviews, 30, 145–153. https://doi.org/10.1016/j.rser.2013.09.019
dc.relationSalgado, R., Rodriguez, P., Venegas, M., Lecuona, A., & Rodriguez, M. C. (2006). Optimized design of hot water storage in solar thermal cooling facilities.
dc.relationSrikhirin, P., & Aphornratana, S. (2002). Investigation of a diffusion absorption refrigerator. Applied Thermal Engineering, 22(11), 1181–1193. https://doi.org/10.1016/S1359-4311(02)00049-2
dc.relationSu, Z., Gu, S., & Vafai, K. (2017). Modeling and simulation of ray tracing for compound parabolic thermal solar collector. International Communications in Heat and Mass Transfer, 87(August), 169–174. https://doi.org/10.1016/j.icheatmasstransfer.2017.06.021
dc.relationSURE SAFE LOCKS CO., L. (2007). Hotel Absorption Minibar. Retrieved May 23, 2017, from http://www.suresafelocks.com/productshow.asp?id=598&sortid=118
dc.relationTaieb, A., Mejbri, K., & Bellagi, A. (2016). Detailed thermodynamic analysis of a diffusion-absorption refrigeration cycle. Energy, 115, 418–434. https://doi.org/10.1016/j.energy.2016.09.002
dc.relationTamayo Enríquez, F., & Bosch, V. G. (n.d.). ¿Qué es el QFD? Descifrando el Despliegue de la Función de Calidad. Retrieved from http://www.qfdlat.com/Imagenes/QFD.pdf
dc.relationTang, F., Li, G., & Tang, R. (2016). Design and optical performance of CPC based compound plane concentrators. Renewable Energy, 95, 140–151. https://doi.org/10.1016/j.renene.2016.04.004
dc.relationTeóricos, A. (n.d.). ATLAS DE RADIACIÓN SOLAR, ULTRAVIOLETA Y OZONO DE COLOMBIA. Retrieved from http://atlas.ideam.gov.co/basefiles/5.Aspectos-teoricos.pdf
dc.relationTíba, C., & Fraidenraich, N. (2011). Optical and thermal optimization of stationary non-evacuated CPC solar concentrator with fully illuminated wedge receivers. Renewable Energy, 36(9), 2547–2553. https://doi.org/10.1016/j.renene.2011.02.007
dc.relationTobergte, D. R., & Curtis, S. (2013). Energía solar térmica. Journal of Chemical Information and Modeling, 53(9), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004
dc.relationUllman, D. G. (2003). The Mechanical Design Process.
dc.relationUnidad de planeación minero energética-UPME. (2017). Plan De Acción Indicativo De Eficiencia Energética 2016 - 2021.
dc.relationWang, P. Y., Guan, H. Y., Liu, Z. H., Wang, G. S., Zhao, F., & Xiao, H. S. (2014). High temperature collecting performance of a new all-glass evacuated tubular solar air heater with U-shaped tube heat exchanger. Energy Conversion and Management, 77, 315–323. https://doi.org/10.1016/j.enconman.2013.08.019
dc.relationWang, W., & Laumert, B. (2014). Simulate a ‘Sun’ for Solar Research: A Literature Review of Solar Simulator Technology, 1–37.
dc.relationYunus A. Cengel. (2007). Transferencia de calor y masa: enfoque practico (Vol. 3).
dc.relationZHENGZHOU HEPO INTERNATIONAL TRADING CO., L. (2015). Solution for Clinic,Biochemistry Analyzer,Laminar Flow Cabinet,Fume Hood,Medical Refrigerator China Manufacturer. Retrieved May 23, 2017, from http://www.hepomedical.com/index.php?cate--cid-4.html#.WSR8eWg1-Ht
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleDesarrollo de un sistema de refrigeración por absorción a partir de energía solar térmica para la universidad Santo Tomás


Este ítem pertenece a la siguiente institución