dc.contributorMateus Rojas, Armando
dc.contributorAmaya, Sindy Paola
dc.contributorGelvez Lizarazo, Oscar Mauricio
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001765795
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001766937
dc.contributorUniversidad Santo Tomás
dc.creatorAgudelo Díaz, Juan Sebastián
dc.creatorCardoza Olano, Oscar Andrés
dc.date.accessioned2022-09-16T22:56:50Z
dc.date.available2022-09-16T22:56:50Z
dc.date.created2022-09-16T22:56:50Z
dc.date.issued2022-09-15
dc.identifierAgudelo Díaz, J. S. y Cardoza Olano, O. A. (2022). Emulación de la fisiología respiratoria del pulmón empleando un sistema embebido. [Trabajo de grado, Universidad Santo Tomás]. Repositorio institucional.
dc.identifierhttp://hdl.handle.net/11634/47184
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractThis project describes the respiratory physiology of the lung using an embedded system in order to make diagnoses in people and detect if they have or suffer from any respiratory insufficiency. To achieve this result, the complete functioning of the respiratory system of the human body was investigated to analyze which variables were best suited to the idea of ​​the project and based on that, generate the mathematical model that describes that functioning. The process began by adapting the mathematical equations that best describe the flow of the respiratory system relating gas exchange, which is the basis of the system, to then carry out the discretization process of the equations in order to program them in development environments and programming languages ​​that were used and observe the results in the different simulated environments. Finally, a user-friendly interface was proposed, made in LabVIEW, in order to manipulate variables depending on the environment or environment where you want to simulate that a person is, and observe the alveolar pressure output for both oxygen and carbon dioxide. carbon dioxide and in this way detect if this person has normal respiratory parameters or suffers from any respiratory insufficiency.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Ingeniería Electrónica
dc.publisherFacultad de Ingeniería Electrónica
dc.relationBenedetta Biagioni et al. “The rising of allergic respiratory diseases in a changing world: from climate change to migration”. In: Expert Review of Respiratory Medicine 14.10 (2020). PMID: 32662693, pp. 973–986. DOI: 10 . 1080 / 17476348 . 2020 . 1794829. eprint: https://doi.org/10.1080/17476348.2020.1794829. URL: https://doi. org/10.1080/17476348.2020.1794829.
dc.relationYinghan Chan et al. “Nutraceuticals: unlocking newer paradigms in the mitigation of inflammatory lung diseases”. In: Critical Reviews in Food Science and Nutrition 0.0 (2021). PMID: 34613853, pp. 1–31. DOI: 10.1080/10408398.2021.1986467. eprint: https: //doi.org/10.1080/10408398.2021.1986467. URL: https://doi.org/10. 1080/10408398.2021.1986467.
dc.relationPanaiotis Finamore, Simone Scarlata, and Raffaele Antonelli Incalzi. “Breath analysis in respiratory diseases: state-of-the-art and future perspectives”. In: Expert Review of Molecu- lar Diagnostics 19.1 (2019). PMID: 30575423, pp. 47–61. DOI: 10.1080/14737159.2019. 1559052. eprint: https://doi.org/10.1080/14737159.2019.1559052. URL: https://doi.org/10.1080/14737159.2019.1559052.
dc.relationPanaiotis Finamore, Simone Scarlata, and Raffaele Antonelli Incalzi. “Breath analysis in respiratory diseases: state-of-the-art and future perspectives”. In: Expert Review of Molecu- lar Diagnostics 19.1 (2019). PMID: 30575423, pp. 47–61. DOI: 10.1080/14737159.2019. 1559052. eprint: https://doi.org/10.1080/14737159.2019.1559052. URL: https://doi.org/10.1080/14737159.2019.1559052.
dc.relationPanaiotis Finamore, Simone Scarlata, and Raffaele Antonelli Incalzi. “Breath analysis in respiratory diseases: state-of-the-art and future perspectives”. In: Expert Review of Molecu- lar Diagnostics 19.1 (2019). PMID: 30575423, pp. 47–61. DOI: 10.1080/14737159.2019. 1559052. eprint: https://doi.org/10.1080/14737159.2019.1559052. URL: https://doi.org/10.1080/14737159.2019.1559052.
dc.relationJorge Fernando Máspero, Nancy Nardacchione, and Damián Marino. “Intervención am- biental en las enfermedades respiratorias”. In: ISSN 1669-9106 123 MEDICINA (Buenos Aires) 79 (2 2019).
dc.relationJorge Fernando Máspero, Nancy Nardacchione, and Damián Marino. “Intervención am- biental en las enfermedades respiratorias”. In: ISSN 1669-9106 123 MEDICINA (Buenos Aires) 79 (2 2019).
dc.relationOrganización Mundial de la Salud. “Preguntas y respuestas sobre la enfermedad por COVID-19”. In: Organización Mundial de la Salud (2020). URL: https : / / www . who . int/es/emergencies/diseases/novel- coronavirus- 2019/advice- for- public/q-a-coronaviruses.
dc.relationKostantinos Kostopanagiotou et al. “COVID-19-related end stage lung disease: two dis- tinct phenotypes”. In: Annals of Medicine 54.1 (2022). PMID: 35168461, pp. 588–590. DOI: 10 . 1080 / 07853890 . 2022 . 2039954. eprint: https : / / doi . org / 10 . 1080 / 07853890.2022.2039954. URL: https://doi.org/10.1080/07853890.2022. 2039954.
dc.relationKostantinos Kostopanagiotou et al. “COVID-19-related end stage lung disease: two dis- tinct phenotypes”. In: Annals of Medicine 54.1 (2022). PMID: 35168461, pp. 588–590. DOI: 10 . 1080 / 07853890 . 2022 . 2039954. eprint: https : / / doi . org / 10 . 1080 / 07853890.2022.2039954. URL: https://doi.org/10.1080/07853890.2022. 2039954.
dc.relationNaciones Unidas. Las muertes por COVID-19 sumarían 15 millones entre 2020 y 2021 | Noti- cias ONU. 2022. URL: https://news.un.org/es/story/2022/05/1508172.
dc.relationNaciones Unidas. Las muertes por COVID-19 sumarían 15 millones entre 2020 y 2021 | Noti- cias ONU. 2022. URL: https://news.un.org/es/story/2022/05/1508172.
dc.relationOMS. Enfermedad por el coronavirus (COVID-19): Vacunas. 2022. URL: https://www.who. int/es/emergencies/diseases/novel-coronavirus-2019/question-and- answers-hub/q-a-detail/coronavirus-disease-(covid-19)-vaccines? adgroupsurvey=%5C%7Badgroupsurvey%5C%7D.
dc.relationOMS. Enfermedad por el coronavirus (COVID-19): Vacunas. 2022. URL: https://www.who. int/es/emergencies/diseases/novel-coronavirus-2019/question-and- answers-hub/q-a-detail/coronavirus-disease-(covid-19)-vaccines? adgroupsurvey=%5C%7Badgroupsurvey%5C%7D.
dc.relationMónica Arreola. Cultivo de células humanas con organ-on-a-chip | Tecnológico de Monterrey. 2018. URL: https://tec.mx/es/noticias/nacional/institucion/cultivo- de-celulas-humanas-con-organ-chip (visited on 04/13/2020).
dc.relationMónica Arreola. Cultivo de células humanas con organ-on-a-chip | Tecnológico de Monterrey. 2018. URL: https://tec.mx/es/noticias/nacional/institucion/cultivo- de-celulas-humanas-con-organ-chip (visited on 04/13/2020).
dc.relationXiaochen Li et al. “Trends and risk factors of mortality and disability adjusted life years for chronic respiratory diseases from 1990 to 2017: Systematic analysis for the Global Burden of Disease Study 2017”. In: The BMJ 368 (2020). ISSN: 17561833. DOI: 10.1136/ bmj.m234.
dc.relationHabib Allah Shahriyari et al. “Air pollution and human health risks: mechanisms and clinical manifestations of cardiovascular and respiratory diseases”. In: Toxin Reviews 41 (2 2022). ISSN: 15569551. DOI: 10.1080/15569543.2021.1887261.
dc.relationMaría T. De Ossa, John E. Londoño, and Alejandro Valencia-Arias. “Modelo de Trans- ferencia Tecnológica desde la Ingeniería Biomédica: un estudio de caso”. In: Informacion Tecnologica (2018). ISSN: 07180764. DOI: 10.4067/S0718-07642018000100010.
dc.relationUniversidad Santo Tomás. Proyección Social USTA COLOMBIA. Tech. rep. Bogotá, D. C., Colombia: Universidad Santo Tómas. URL: http://www.usta.edu.co (visited on 04/07/2020).
dc.relationUniversidad Santo Tomás. Proyección Social USTA COLOMBIA. Tech. rep. Bogotá, D. C., Colombia: Universidad Santo Tómas. URL: http://www.usta.edu.co (visited on 04/07/2020).
dc.relationIlka Wagner et al. “Skin and hair-on-a-chip: Hair and skin assembly versus native skin maintenance in a chip-based perfusion system”. In: BMC Proceedings (2013). ISSN: 1753- 6561. DOI: 10.1186/1753-6561-7-s6-p93.
dc.relationAsad A. Ahmad et al. “Optimization of 3-D organotypic primary colonic cultures for organ-on-chip applications”. In: Journal of Biological Engineering (2014). ISSN: 17541611. DOI: 10.1186/1754-1611-8-9.
dc.relationHao-Hsiang Hsu et al. “A method to determine and simulate the permeation through a gel matrix in a multi-organ-chip”. In: BMC Proceedings (2015). ISSN: 1753-6561. DOI: 10.1186/1753-6561-9-s9-p77.
dc.relationMichael Poznic. “Modeling Organs with Organs on Chips: Scientific Representation and Engineering Design as Modeling Relations”. In: Philosophy and Technology (2016). ISSN: 22105441. DOI: 10.1007/s13347-016-0225-3.
dc.relationAslam Abbasi Akhtar et al. Organoid and Organ-on-a-Chip Systems: New Paradigms for Mod- eling Neurological and Gastrointestinal Disease. 2017. DOI: 10.1007/s40778-017-0080- x.
dc.relationLaszlo Hajba and Andras Guttman. “Continuous-Flow-Based Microfluidic Systems for Therapeutic Monoclonal Antibody Production and Organ-on-a-Chip Drug Testing”. In: Journal of Flow Chemistry (2017). ISSN: 20630212. DOI: 10.1556/1846.2017.00014.
dc.relationLaszlo Hajba and Andras Guttman. “Continuous-Flow-Based Microfluidic Systems for Therapeutic Monoclonal Antibody Production and Organ-on-a-Chip Drug Testing”. In: Journal of Flow Chemistry (2017). ISSN: 20630212. DOI: 10.1556/1846.2017.00014.
dc.relationMirza Ali Mofazzal Jahromi et al. Microfluidic Brain-on-a-Chip: Perspectives for Mimicking Neural System Disorders. 2019. DOI: 10.1007/s12035-019-01653-2.
dc.relationJesus Shrestha et al. “Lung-on-a-chip: the future of respiratory disease models and phar- macological studies”. In: Critical Reviews in Biotechnology 40.2 (2020). PMID: 31906727, pp. 213–230. DOI: 10 . 1080 / 07388551 . 2019 . 1710458. eprint: https : / / doi . org/10.1080/07388551.2019.1710458. URL: https://doi.org/10.1080/ 07388551.2019.1710458.
dc.relationHusam Y. Al-Hetari et al. “A Mathematical Model of Lung Functionality using Pres- sure Signal for Volume-Controlled Ventilation”. In: 2020 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS). 2020, pp. 135–140. DOI: 10.1109/ I2CACIS49202.2020.9140092.
dc.relationYeeun Bak et al. “Exacerbation of Mycobacterium avium pulmonary infection by co- morbid allergic asthma is associated with diminished mycobacterium-specific Th17 re- sponses”. In: Virulence 12.1 (2021). PMID: 34605365, pp. 2546–2561. DOI: 10 . 1080 / 21505594 . 2021 . 1979812. eprint: https : / / doi . org / 10 . 1080 / 21505594 . 2021.1979812. URL: https://doi.org/10.1080/21505594.2021.1979812.
dc.relationMary Bates. “Fighting COVID-19 With Lung-Chips”. In: IEEE Pulse 12.3 (2021), pp. 6–10. ISSN: 2154-2317. DOI: 10.1109/MPULS.2021.3078598.
dc.relationYarub Al-Douri et al. “Nanomaterial-based biosensors for COVID-19 detection”. In: Crit- ical Reviews in Solid State and Materials Sciences 0.0 (2021), pp. 1–24. DOI: 10 . 1080 / 10408436 . 2021 . 1989665. eprint: https : / / doi . org / 10 . 1080 / 10408436 . 2021.1989665. URL: https://doi.org/10.1080/10408436.2021.1989665.Yarub Al-Douri et al. “Nanomaterial-based biosensors for COVID-19 detection”. In: Crit- ical Reviews in Solid State and Materials Sciences 0.0 (2021), pp. 1–24. DOI: 10 . 1080 / 10408436 . 2021 . 1989665. eprint: https : / / doi . org / 10 . 1080 / 10408436 . 2021.1989665. URL: https://doi.org/10.1080/10408436.2021.1989665.
dc.relationKun-Yao Lin, Yen-Hsun Tsai, and Yu-Cheng Fan. “A Model-Based Convolutional Neu- ral Network for Covid-19 and Related Lung Diseases Prediction with Graphical Inter- face Operation and Chip Design”. In: 2021 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia). 2021, pp. 1–4. DOI: 10.1109/ICCE- Asia53811.2021. 9641902.
dc.relationCasper Falster et al. “Lung ultrasound may be a valuable aid in decision making for patients admitted with COVID-19 disease”. In: European Clinical Respiratory Journal 8.1 (2021), p. 1909521. DOI: 10.1080/20018525.2021.1909521. eprint: https://doi. org/10.1080/20018525.2021.1909521. URL: https://doi.org/10.1080/ 20018525.2021.1909521.
dc.relationRadovan Stojanovic and Andrej Skraba. “Simplified open HW /SW pulse oximetry in- terface for purpose of COVID-19 symptoms detection and monitoring”. In: 2021 10th Mediterranean Conference on Embedded Computing (MECO). 2021, pp. 1–5. DOI: 10.1109/ MECO52532.2021.9460178.
dc.relationJ Canet. “FISIOLOGÍA RESPIRATORIA”. In: Sociedad Catalana de Anestesiología, Reani- mación y Terapéutica del Dolor (2018).
dc.relationGuillermo M. Albaiceta. “Curvas presión-volumen en la lesión pulmonar aguda”. es. In: Medicina Intensiva 33 (July 2009), pp. 243–250. ISSN: 0210-5691. URL: http://scielo. isciii.es/scielo.php?script=sci_arttext&pid=S0210-56912009000500005& nrm=iso.
dc.relationHoward T. Milhorn et al. “A Mathematical Model of the Human Respiratory Control Sys- tem”. In: Biophysical Journal 5.1 (1965). ISSN: 00063495. DOI: 10.1016/S0006-3495(65) 86701-7.
dc.relationRon T. Ogan. “Hardware-in-the-Loop Simulation”. In: Modeling and Simulation in the Sys- tems Engineering Life Cycle: Core Concepts and Accompanying Lectures. Ed. by Margaret L. Loper. London: Springer London, 2015, pp. 167–173. ISBN: 978-1-4471-5634-5. DOI: 10. 1007/978- 1- 4471- 5634- 5_14. URL: https://doi.org/10.1007/978- 1- 4471-5634-5_14.
dc.relationMihaela Juganaru Mathieu. “Lenguaje de programacion”. In: Introduccion a la programa- cion 1 (2014).
dc.relationMathworks. MATLAB - El lenguaje del cálculo técnico - MATLAB & Simulink. URL: https: //la.mathworks.com/products/matlab.html.
dc.relationMathworks. Simulación y diseño basado en modelos con Simulink - MATLAB & Simulink. URL: https://la.mathworks.com/products/simulink.html.
dc.relationPeter Marwedel. Embedded System Design. Jan. 2007.
dc.relationS Casco. “Raspberry Pi, Arduino y Beaglebone Black Comparación y Aplicaciones”. In: vol 1 (2014), pp. 4–8.
dc.relationÓscar Torrente Artero. Arduino. Curso práctico de formación. RC libros, 2013.
dc.relationEdwin Patricio Álvarez Sucuy and Carlos Xavier Guerrero Berrones. “Diseño e imple- mentación de un módulo de electrónica de potencia para el control y monitoreo de una señal de voltaje utilizando la tarjeta de control NI myRIO.” B.S. thesis. Escuela Superior Politécnica de Chimborazo, 2019.
dc.relationA. B. OTIS et al. “Mechanical factors in distribution of pulmonary ventilation”. In: Journal of applied physiology 8 (4 1956). ISSN: 00218987. DOI: 10.1152/jappl.1956.8.4.427.
dc.relationZhonghai He and Yuqian Zhao. Modeling in Respiratory Movement Using LabVIEW and Simulink. 2011. DOI: 10.5772/13134.
dc.relationNéstor Flórez Luna and Manuela Beltrán. SIMULACION POR SOFTWARE DE LAS CUR- VAS GENERADAS EN VENTILACION MECANICA POR CONTROL DE PRESION.
dc.relationEbymar Arismendi and Joan Albert Barberà. VALORACIÓN DEL INTERCAMBIO GASEOSO. Vol. 11. 2011, pp. 59–72. URL: https : / / www . neumomadrid . org / wp - content / uploads/monog_neumomadrid_xviii.pdf.
dc.relationP Oliver et al. “Estudio de la oxigenación e interpretación de la gasometría arterial”. In: Documentos de la Sociedad Española de Químicos Cosméticos (2015 2014).
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleEmulación de la fisiología respiratoria del pulmón empleando un sistema embebido.


Este ítem pertenece a la siguiente institución