dc.contributorMolina Gómez, Nidia Isabel
dc.contributorÁlvarez Berrio, Johan Alexander
dc.contributorhttps://orcid.org/0000-0003-4485-262X
dc.contributorhttps://scholar.google.es/citations?user=pbio7wUAAAAJ&hl=es
dc.contributorhttps://scholar.google.es/citations?user=Y4UC0goAAAAJ&hl=es
dc.creatorParra Pérez, Miguel Angel
dc.creatorZapata Zúñiga, Maria Camila
dc.date.accessioned2020-01-24T18:46:52Z
dc.date.available2020-01-24T18:46:52Z
dc.date.created2020-01-24T18:46:52Z
dc.date.issued2020-01-16
dc.identifierParra, M. A. & Zapata, M. C. (2019). Innovación en tecnologías en plantas de tratamiento de agua residual para la eliminación de antibióticos, bacterias resistentes y genes de resistencia antibiótica: una revisión (Trabajo de pregrado de Ingeniería Ambiental). Universidad Santo Tomás. Bogotá, Colombia.
dc.identifierhttp://hdl.handle.net/11634/21176
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractThe excessive use of antibiotics has given way to their presence in wastewater and aquatic ecosystems, causing alterations in these and affecting public health by the proliferation of antibiotic resistant bacteria (ARB) and their antibiotic resistance genes (ARG). One way to reduce these negative impacts is by improving urban wastewater treatment. This review presents 46 research out of 10 antibiotic elimination technologies, ARBs and ARGs after a systematic review of the subject, in order to evaluate the elimination efficiency of each, as well as the influence of the countries where they have been implemented and thus mitigate the risk of exposure in water sources. As a result, it was obtained that the photo-fenton treatments and the electrochemistry are the ones that obtain greater efficiencies of elimination of antibiotics; however, for the microbial agents ARB and ARG, the gamma radiation and the photocatalysis with TiO2 and UV turned out to be superior by their percentages of removal corresponding to 99.9%. It was found that China is the country with more scientific research conducted on the subject, an aspect that can be correlated with the health effects faced by the population of this country, being one of the largest consumers of antibiotics in the world, followed by publications Colombia that stands out for its studies on the efficiency of electrochemistry.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado de Ingeniería Ambiental
dc.publisherFacultad de Ingeniería Ambiental
dc.relationC. Peña et al., “Emerging pollutants in the urban water cycle in Latin America: A review of the current literature,” J. Environ. Qual., vol. 237, pp. 408-423, 2019.
dc.relationA. Kumar and D. Pal, “Antibiotic resistance and wastewater: Correlation, impact and critical human health challenges,” J. Environ. Chem. Eng., vol. 6, no. 1. pp. 52–58, 2018.
dc.relationS. P. De León, R. Arredondo and Y. López, “Resistance to antibiotic: A serious global problem”, Gac. Med. Mex., vol. 151, no. 5, p. 632-639, 2015.
dc.relationJ. Carlet1 et al., “Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action,” Antimicrob. Resist. Infect. Control., vol. 1, no 11, 2012.
dc.relationE. Kleina et al., “Global increase and geographic convergence in antibiotic consumption between 2000 and 2015,” PNAS, vol. 115, no. 15, 2018.
dc.relationW. Qing et al., “Occurrence and distribution of clinical and veterinary antibiotics in the faeces of a Chinese population,” J. Hazard. Mater., vol. 383, pp. 121-129, 2019.
dc.relationJ. Machado and D. González, “Dispensación de antibióticos de uso ambulatorio en una población colombiana,” Rev. Salud pública, vol. 11, no. 5, pp 734-744, 2009.
dc.relationA. Villalobos, L. Barrero, S. Rivera, M. Ovalle and D. Valera, “Vigilancia de infecciones asociadas a la atención en salud, resistencia bacteriana y consumo de antibióticos en hospitales de alta complejidad, Colombia, 2011,” Biomédica, vol. 34, no. 1. pp. 67-80, abril, 2014.
dc.relationO. Hernández, O. Camacho, H. González, Y. Pajaro and M. Silva, “Estudio de utilización de antibióticos en Hospitales de Mediana y Alta Complejidad del Departamento del Atlántico-Colombia entre el 2016 y 2017,” Rev. AVFT, vol. 37, no. 5, 2018.
dc.relationA. Almakki, E. Jumas, H. Marchandin and P. Licznar, “Antibiotic resistance in urban runoff,” Sci. Total Environ, vol. 667, pp. 64-76, 2019.
dc.relationO. Malik, A. Hsu, L. Johnson and A. de Sherbinin, “A global indicator of wastewater treatment to inform the Sustainable Development Goals (SDGs),” Environ. Sci. Policy, vol. 48, pp. 172-185, 2015.
dc.relationO. Golovko, V. Kumar, G. Fedorova, T. Randak, and R. Grabic, “Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant,” Chemosphere, vol. 111, pp. 418–426, Sep. 2014.
dc.relationK. D. Brown, J. Kulis, B. Thomson, T. H. Chapman, and D. B. Mawhinney, “Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico,” Sci. Total Environ., vol. 366, no. 2, pp. 772–783, 2006.
dc.relationM. Harrabi et al., “Analysis of multiclass antibiotic residues in urban wastewater in Tunisia,” Environ. Nanotechnol. Monit. Manage., vol. 10, pp. 163–170, 2018.
dc.relationA. M. Botero et al., “An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater,” Sci. Total Environ., vol. 642, pp. 842–853, 2018.
dc.relationX. Domènech, W. F. Jardim and M. I. Litter, Procesos avanzados de oxidación para la eliminación de contaminantes. 2001.
dc.relationI. Iakovides et al., “Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity,” Water Res., vol. 159, pp. 333–347, Aug. 2019.
dc.relationY. Zhuang et al., “Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection,” Environ. Sci. Pollunt. Res., vol. 22, no. 9, pp. 7037–7044, 2015.
dc.relationJ. Alexander, G. Knopp, A. Dötsch, A. Wieland, and T. Schwartz, “Ozone treatment of conditioned wastewater selects antibiotic resistance genes, opportunistic bacteria, and induce strong population shifts,” Sci. Total Environ., vol. 559, pp. 103–112, Jul. 2016.
dc.relationC. Stange, J. P. . Sidhu, S. Toze, and A. Tiehm, “Comparative removal of antibiotic resistance genes during chlorination, ozonation, and UV treatment,” vol. 222, no. 3, pp. 541–548, Apr. 2019.
dc.relationF. Lüddeke, S. Heß, C. Gallert, J. Winter, H. Güde, and H. Löffler, “Removal of total and antibiotic resistant bacteria in advanced wastewater treatment by ozonation in combination with different filtering techniques,” Water Res., vol. 69, pp. 243–251, Feb. 2015.
dc.relationJ. Castillo, A. López and E. Bandala, “Desinfección de agua mediante el uso de tecnologías emergentes basadas en procesos avanzados de oxidación,” Temas de Ingeniería de Alimentos, vol. 4, no. 1, pp. 74-83, 2010.
dc.relationV. Kavitha and K. Palanivelu, “Degradation of 2-Chlorophenol by Fenton and Photo-Fenton Processes - A Comparative Study,” J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., vol. A38, no. 7, pp. 1215-1231, 2003.
dc.relationN. De la Cruz et al., “Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge,” Water Res., vol. 46, no. 6, pp. 1947–1957, Apr. 2012.
dc.relationS. Li et al., “M. electro-F. A. promising system for antibiotics resistance genes degradation and energy generation,” Sci. Total Environ., pp. 134-160, 2019.
dc.relationM. Hassana et al., “Energy-efficient degradation of antibiotics in microbial electro-Fenton system catalysed by M-type strontium hexaferrite nanoparticles,” Chem. Eng. J., vol. 138, 2020.
dc.relationM. Verma and A. Haritash, “Degradation of amoxicillin by Fenton and Fenton-integrated hybrid oxidation processes,” J. Environ. Chem. Eng., vol. 7, no. 1, 2019.
dc.relationL. Souza, A. Moreira and L. Lang, “Degradation of antibiotics norfloxacin by Fenton, UV and UV/H2O2,” J. Environ. Manage., vol. 154, pp. 8-12, 2015.
dc.relationA. H. Mamaghani, F. Haghighat, and C. S. Lee, “Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art,” Appl. Catal. B Environ., vol. 203, pp. 247–269, Apr. 2017.
dc.relationC. Guo et al., “H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes,” J. Hazard. Mater., vol. 323, pp. 710–718, Feb. 2017.
dc.relationM. Matos et al., “Enhanced degradation of the antibiotic sulfamethoxazole by heterogeneous photocatalysis using Ce0, 8Gd0, 2O2-d/TiO2 particles”, J. Alloys Compd., vol. 808, no. 5, 2019.
dc.relationP. Karaolia et al., “Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters,” Appl. Catal. B Environ., vol. 224, pp. 810–824, May 2018.
dc.relationM.-T. Guo and X.-B. Tian, “Impacts on antibiotic-resistant bacteria and their horizontal gene transfer by graphene-based TiO2&Ag composite photocatalysts under solar irradiation,” J. Hazard. Mater., vol. 380, p. 120877, Dec. 2019.
dc.relationM. Jiménez, I. J. Ferreira, S. da Silva, P. R. Guimarães, and E. M. Saggioro, “Removal of contaminants of emerging concern (CECs) and antibiotic resistant bacteria in urban wastewater using UVA/TiO2/H2O2 photocatalysis,” Chemosphere, vol. 210, pp. 449–457, Nov. 2018.
dc.relationF. Hernández, “Un mordente, un electrolito y grabado en cualquier metal”, Rev. Cient., no. 11, pp. 181-188, Dec. 2014.
dc.relationY. Liu, Y. Gao, B. Yao, and D. Zou, “Removal of chlortetracycline by nano- micro-electrolysis materials: Application and mechanism,” Chemosphere, vol. 238, pp. 124543, 2020.
dc.relationH. Mahdizadeh and M. Malakootian, “Optimization of ciprofloxacin removal from aqueous solutions by a novel semi-fluid Fe/charcoal micro-electrolysis reactor using response surface methodology,” Process Saf. Environ. Prot., vol. 123, pp. 299–308, Mar. 2019.
dc.relationY. Liu, C. Wang, Z. Sui, and D. Zou, “Degradation of chlortetracycline using nano micro-electrolysis materials with loading copper,” Sep. Purif. Technol., vol. 203, pp. 29–35, Sep. 2018.
dc.relationX. Cui, X. Li, N. Li, G. Chen, and H. Zheng, “Sludge based micro-electrolysis filler for removing tetracycline from solution,” J. Colloid Interface Sci., vol. 534, pp. 490–498, Jan. 2019.
dc.relationYusuf G Adewuyi, “Sonochemistry in environmental remediation. 2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water,”Environ. Sci. Technol., vol. 39, no. 22, pp. 8557-857, 2005.
dc.relationE. A. Serna, J. Silva, A. L. Giraldo, O. A. Flórez, and R. A. Torres, “High frequency ultrasound as a selective advanced oxidation process to remove penicillinic antibiotics and eliminate its antimicrobial activity from water,” Ultrason. Sonochem., vol. 31, pp. 276–283, Jul. 2016.
dc.relationJ. Jin et al., “3D Bombax-structured carbon nanotube sponge coupling with Ag3PO4 for tetracycline degradation under ultrasound and visible light irradiation,” Sci. Total Environ., vol. 695, 2019.
dc.relationK. V. Patiño, S. M. Arroyave and J. M. Marín, “Oxidación electroquímica y ozonización aplicadas al tratamiento de aguas de lavado de la producción de biodiesel” Información Tecnológica, vol. 23, no. 2, pp. 41-52, 2012.
dc.relationA. L. Giraldo, E. D. Erazo, O. A. Flórez, E. A. Serna and R. A. Torres, “Tratamiento electroquímico de aguas que contienen antibióticos β-lactámicos,” Rev. Ciencia Desarrollo, vol. 7, no. 1, pp. 21–29, Jun. 2016.
dc.relationH. Zhang, F. Liu, X. Wu, J. Zhang, and D. Zhang, “Degradation of tetracycline in aqueous medium by electrochemical method,” Asia-Pac. J. Chem. Eng., vol. 4, no. 5, pp. 568–573, Sep. 2009.
dc.relationS. D. Jojoa, J. Silva, E. Herrera and R. A. Torres, “Elimination of the antibiotic norfloxacin in municipal wastewater, urine and seawater by electrochemical oxidation on IrO2 anodes,” Sci. Total Environ., vol. 575, pp. 1228–1238, Jan. 2017.
dc.relationB. G. Padilla et al., “Electrochemical degradation of amoxicilin in aqueous media,” Chem. Eng. Process., vol. 94, pp. 93-98, 2015.
dc.relationE. Serna, K. Berrio, and R. Torres, “Electrochemical treatment of penicillin, cephalosporin, and fluoroquinolone antibiotics via active chlorine: evaluation of antimicrobial activity, toxicity, matrix, and their correlation with the degradation pathways,” Environ. Sci. Pollunt Res., vol. 24, no. 30, pp. 23771–23782, Oct. 2017.
dc.relationW. R. Calero Cáceres, “Evaluación de reservorios ambientales de partículas fágicas portadoras de genes resistencia a antibióticos,” tesis doctoral, Universitat de Barcelona, 2016.
dc.relationY. Hu et al., “Removal of sulfonamide antibiotic resistant bacterial and intracellular antibiotic resistance genes by UVC-activated peroxymonosulfate,” Chem. Eng. J., vol. 368, pp. 888–895, Jul. 2019.
dc.relationJ. Rodríguez-Chueca et al., “Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs: Removal or persistence of antibiotics and antibiotic resistance genes?,” Sci. Total Environ., vol. 652, pp. 1051–1061, Feb. 2019.
dc.relationT. Zhang et al., “Removal of antibiotic resistance genes and control of horizontal transfer risk by UV, chlorination and UV/chlorination treatments of drinking water,” Chem. Eng. J., vol. 358, pp. 589–597, Feb. 2019.
dc.relationC. Ferradini, “Kinetic Behavior of the Radiolysis Products of Water,” Adv. Inorg. Chem. Radiochem., vol. 3. Academic Press, pp. 171–205, 1961.
dc.relationW. Song, W. Chen, W. J. Cooper, J. Greaves and G. E. Miller, “Free-Radical destruction of b-Lactam antibiotics in aqueous solution,” J. Phys. Chem., vol. 112, no. 32, pp. 7411-7417, Jun. 2008.
dc.relationD. Chen et al., “Degradation of antibiotic cephalosporin C in aqueous solution and elimination of antimicrobial activity by gamma irradiation,” Chem. Eng. J., vol. 374, pp. 1102–1108, Oct. 2019.
dc.relationR. Zhuan and J. Wang, “Enhanced degradation and mineralization of sulfamethoxazole by integrating gamma radiation with Fenton-like processes,” Radiat. Phy. Chem., vol. 166, 2020.
dc.relationR. Changotra, J. P. Guin, L. Varshney, and A. Dhir, “Assessment of reaction intermediates of gamma radiation-induced degradation of ofloxacin in aqueous solution,” Chemosphere, vol. 208, pp. 606–613, Oct. 2018.
dc.relationW. Zheng, X. Wen, B. Zhang, and Y. Qiu, “Selective effect and elimination of antibiotics in membrane bioreactor of urban wastewater treatment plant,” Sci. Total Environ., vol. 646, pp. 1293–1303, Jan. 2019.
dc.relationT.H. Le, C. Ng, N. H. Tran, H. Chen, and K. Y.-H. Gin, “Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems,” Water Res., vol. 145, pp. 498–508, 2018.
dc.relationY. Zhu, Y. Wang, S. Zhou, X. Jiang, X. Ma, and C. Liu, “Robust performance of a membrane bioreactor for removing antibiotic resistance genes exposed to antibiotics: Role of membrane foulants,” Water Res., vol. 130, pp. 139–150, Mar. 2018.
dc.relationB.-J. Shi et al., “Application of membrane bioreactor for sulfamethazine-contained wastewater treatment,” Chemosphere, vol. 193, pp. 840–846, Feb. 2018
dc.relationZ. Xu, X. Song, G. Li, Y. Li, and W. Luo, “Removal of antibiotics by sequencing-batch membrane bioreactor for swine wastewater treatment,” Sci. Total Environ., vol. 684, pp. 23–30, Sep. 2019.
dc.relationW. Zhao, Q. Sui, X. Mei, and X. Cheng, “Efficient elimination of sulfonamides by an anaerobic/anoxic/oxic-membrane bioreactor process: Performance and influence of redox condition,” Sci. Total Environ., vol. 633, pp. 668–676, Aug. 2018.
dc.relationT. T. Nguyen et al., “Removal of antibiotics in sponge membrane bioreactors treating hospital wastewater: Comparison between hollow fiber and flat sheet membrane systems,” Bioresour. Technol. Rep., vol. 240, pp. 42–49, Sep. 2017.
dc.relationG. Prados Joya, “Tratamiento de aguas para la eliminación de antibióticos -nitroimidazoles- mediante adsorción sobre carbón activado y tecnologías avanzadas de oxidación”, tesis doctoral, Universidad de Granada, 2010.
dc.relationA. A. Basheer, “New generation nano-adsorbents for the removal of emerging contaminants in water,” J. Mol. Liq., vol. 261, pp. 583–593, Jul. 2018.
dc.relationS. A. Snyder et al., “Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals,” Desalination, vol. 202, no. 1. pp. 156–181, 2007.
dc.relationM. J. Ahmed and S. K. Theydan, “Fluoroquinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis,” J. Taiwan Inst. Chem. Eng., vol. 45, no. 1, pp. 219–226, Jan. 2014.
dc.relationG. Nazari, H. Abolghasemi, and M. Esmaieli, “Batch adsorption of cephalexin antibiotic from aqueous solution by walnut shell-based activated carbon,” J. Taiwan Inst. Chem. Eng., vol. 58, pp. 357–365, Jan. 2016.
dc.relationQ. Tang, P et al., “Control of antibiotic resistance in China must not be delayed: The current state of resistance and policy suggestions for the government, medical facilities, and patients,” BioSci. Trends, vol. 10, no. 1, pp. 1-6, 2016.
dc.relationM. Ferech et al., “European Surveillance of Antimicrobial Consumption (ESAC): outpatient antibiotic use in Europe,” J. Antimicrob. Chemother., vol. 48, pp. 401-407, 2006.
dc.relationF. Reinthaler et al., “Antibiotic resistance of E. coli in sewage and sludge,” Water Res., vol. 37, no. 8, pp. 1685-1692, Abril, 2003.
dc.relationS. Mosquito, J. Ruiz, J. Bauer and T. Ochoa, “Mecanismos moleculares de Resistencia antibiótica en Escherichia coli asociadas a diarrea,” Rev. Peru Med. Exp. Salud Pública, vol. 28, no. 4, pp. 648-656, 2011.
dc.relationG. Pliego et al., “Trends in the intensification of the Fenton process for wastewater treatment -An overview,” Crit. Rev. Env. Sci. Technol., vol. 45, no. 24, pp. 2611-2692, 2015.
dc.relationJ. Pignatello, E. Oliveros and A. MacKay, “Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry,” J. Hazard. Mater., vol. 36, pp. 1-84, 2006.
dc.relationP. Kajitvichyanukul, L. Ming-Chun, L. Chih-Hsiang, W. Wirojanagud and T. Koottateo, “Degradation and detoxification of formaline wastewater by advanced oxidation processes”, J. Hazard. Mater., vol. 135, pp. 337-343, July, 2006.
dc.relationA. Vorontsov, “Advancing Fenton and photo-Fenton water treatment through the catalyst design”, vol. 372, pp. 103-112, 2019. Crit. Rev. Env. Sci. Technol., vol. 45, no. 24, pp. 2611-2692, 2015.
dc.relationB. Feier, A. Florea, C. Cristea and R. Sandulescu, “Electrochemical detection and removal of pharmaceuticals in waste waters,” Curr. Opin. Electrochem., vol. 11, pp. 1-11, Octuber 2018.
dc.relationP. Liu, H. Zhang, Y. Feng, C. Shen and F. Yang, “Integrating electrochemical oxidation into forward osmosis process for removal of trace antibiotics in wastewater,” J. Hazard. Mater., vol. 296, pp. 248-255, 2015.
dc.relationE. Lacasa, S. Cotillas, C. Saez, J. Lobato, P. Cañizares and M. Rodrigo, “Environmental applications of electrochemical technology. What is needed to enable full-scale applications?” Curr. Opin. Electrochem., vol. 16, pp. 149-156, 2019.
dc.relationC. Byrne, G. Subramanian and S. Pillai, “Recent advances in photocatalysis for environmental applications”, J. Environ. Chem. Eng., vol. 6, no. 3, pp. 3531-3555, Jun, 2018.
dc.relationL. Garcés, E. Mejía and J. Santamaría, “La fotocatálisis como alternativa para el tratamiento de aguas residuales,” Rev. Lasallista Investig., vol. 1, no. 1, pp. 83-92, 2004.
dc.relationJ. You, Y. Guo, R. Guo and X. Liu, “A review of visible light-active photocatalysts for water disinfection: Features and prospects,” Chem. Eng. J., vol. 373, pp. 624-641, Octubre, 2019.
dc.relationW. Jianlong, “Application of radiation technology to sewage sludge processing: A review,” J. Hazard. Mater., vol.143, pp. 2-7, 2007.
dc.relationM. Salgot and M. Folch, “Wastewater treatment and water reuse,” Curr. Opin. Environ. Sci. Health, vol. 2, pp. 64-74, Ap. 2018.
dc.relationH. Jo et al., “Improvement of biodegradability of industrial wastewaters by radiation treatment,” J. Radioanal. Nucl. Chem., vol. 268, no. 1, pp. 145-150, 2006.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleInnovación en tecnologías en plantas de tratamiento de agua residual para la eliminación de antibióticos, bacterias resistentes y genes de resistencia antibiótica: una revisión


Este ítem pertenece a la siguiente institución