dc.contributorTorres Pinzón, Carlos Andrés
dc.contributorhttps://orcid.org/0000-0003-0367-8143
dc.contributorhttps://scholar.google.es/citations?user=gMAr7YEAAAAJ&hl=es
dc.contributorhttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000692670
dc.creatorCuéllar Guarnizo, Jairo Alberto
dc.date.accessioned2019-05-06T19:32:23Z
dc.date.available2019-05-06T19:32:23Z
dc.date.created2019-05-06T19:32:23Z
dc.date.issued2019-05-02
dc.identifierCuéllar Guarnizo, J. A. (2019).Diseño de un controlador para el seguimiento del punto de máxima potencia (MPPT) en paneles solares. Universidad Santo Tomás. Bogotá, Colombia.
dc.identifierhttp://hdl.handle.net/11634/16519
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractThe DC / DC switched converters applied to photovoltaic systems are the focus of this investigation. In the first part of the work, the importance of this type of work is sustained, a state of the art on CC / DC converters and MPPT algorithms is presented, in addition to the work methodology, as well as the objectives and justification of the work. Next, the solar resource is discussed. A consultation and analysis of collected data is presented about the energy potential in Villavicencio and in Bogotá. They also study the mathematical models of solar panels, and the most appropriate way to simulate them using software. At the end, results of simulations in PSIM on solar panels and their behavior are presented. Switched converters are the object of analysis of this work. The simulations of the converter circuit in PSIM are shown, in addition to the mathematical model of the converter in simulink. A mathematical development of the stable state regime and the transitory regime is also presented. The results on simulations in open loop of the converter are also shown. Three algorithms were studied for the DC / DC converter model. It started with the P & O and Incremental Conductance algorithms, and finally the control in sliding modes. The results of simulations are presented, as well as images of the signals that describe the behavior of the circuits. The experimentation is described in the final part of the document. The three MPPT algorithms were implemented on a microcontroller, taking as variables the intensity and output voltage of the panel. Finally, a section of conclusions and discussion of the results obtained in the project is presented, in front of the limitations of the work and comparing with the current devices of the power converters.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherMaestría Ingeniería Electrónica
dc.publisherFacultad de Ingeniería Electrónica
dc.relationAbid, H., Toumi, A., & Chaabane, M. (2014). MPPT Algorithm for Photovoltaic Panel Based on Augmented Takagi-Sugeno Fuzzy Model. ISRN Renewable Energy, 2014, 1–10. https://doi.org/10.1155/2014/253146
dc.relationBastidas Rodriguez, J. D., Franco, E., Petrone, G., Ramos Paja, C. A., & Spagnuolo, G. (2014). Maximum power point tracking architectures for photovoltaic systems in mismatching conditions: a review, 7(November 2013), 1396–1413. https://doi.org/10.1049/iet-pel.2013.0406
dc.relationCastellanos, N. (2013). Evaluación preliminar del uso del efecto piezoeléctrico para generación de energía. Revista Inventum, (15), 35–40. Retrieved from http://biblioteca.uniminuto.edu/ojs/index.php/Inventum/article/view/549
dc.relationCid-Pastor, A., Martínez-Salamero, L., Alonso, C., Schweitz, G., & Leyva, R. (2007). DC power gyrator versus DC power transformer for impedance matching of a PV array. EPE-PEMC 2006: 12th International Power Electronics and Motion Control Conference, Proceedings, (3), 1853–1858. https://doi.org/10.1109/EPEPEMC.2006.283129
dc.relationCruz Boscá, M., & Buendía, E. (2009). Física en la Red.
dc.relationGarcía Hortal, S. (2009). Estudio de control de búsqueda del extremo en MPPT para paneles solares, 1–90.
dc.relationGreen, M., Emery, K., Hishikawa, Y., Warta, W., & Dunlop, E. (2016). Solar cell efficiency tables. PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, 9(11), 261–270. https://doi.org/10.1002/pip
dc.relationHaroun, R., & Aroudi, A. El. (2017). Synthesis of a Power Gyrator Based on Sliding Mode Control of two Cascaded Boost Converters Using One Sliding Surface, (June). https://doi.org/10.1515/9783110448412-001
dc.relationHart, D. W. (2001). Electrónica de Potencia. (P. E. S.A, Ed.). Madrid.
dc.relationIDEAM, & UPME. (2015). Atlas Interactivo IDEAM.
dc.relationMartinez Salamero, L., Cid Pastor, A., El Aroudi, A., Giral, R., & Calvente, J. (2009). Modelado y Control de Convertidores Conmutados Continua-Continua: Una perspectiva Tutorial. Revista Iberoamericana de Automática e Informática Industrial RIAI, 6(4), 5–20. https://doi.org/10.1016/S1697-7912(09)70104-9
dc.relationMathworks. (2000). MPPT Algorithm - MATLAB & Simulink.
dc.relationMejia, A. E., Torres, C. A., & Hincapie Isaza, R. A. (2010). Conexión de un sistema fotovoltaico a la red eléctrica. Scientia et Technica, (44), 31–36.
dc.relationMejía, D. A., Torres, I., & Diaz, J. L. (2014). Comparación de algoritmos MPPT aplicados a un 97 conversor SEPIC en sistemas fotovoltaicos, (45), 44–55.
dc.relationMorales, D. S. (2010). Maximum Power Point Tracking Algorithms for Photovoltaic Applications. Science, 411, 82. https://doi.org/10.1016/j.tcs.2010.08.011
dc.relationMurdoch, C. S., & Reynoso, S. N. (2013). Design and Implementation of a MPPT Circuit for a Solar UAV. Ieee Latin America Transactions, 11(1), 108–111. https://doi.org/10.1109/tla.2013.6502787
dc.relationPoggi-Varaldo, H. M., Martínez Reyes, A., & Pineda Cruz, J. A. (2009). Libro de Ciencia y Tecnología No 2. México.
dc.relationRashid, M. H. (2001). Electrónica de Potencia.
dc.relationRiosolar. (2015). Sistema Fotovoltaico.
dc.relationRodriguez Meza, M. A., & Cervantes Cota, J. L. (2005). El Efecto Fotoeléctrico, 1–22. Retrieved from http://www.astro.inin.mx/mar
dc.relationRuiz C, L. J., Beristáin J, J. A., Sosa T., I. M., & Hernández, H. (2010). Estudio del Algoritmo de Seguimiento de Punto de Máxima Potencia Perturbar y Observar. Revista De Ingeniería Eléctrica, Electrónica Y Computación, 8(1), 17–23.
dc.relationTorres, M. D., Schallenberg Rodríguez, J. C., & Piernavieja Izquierdo, G. (2008). Energías renovables y eficiencia energética. (I. T. de Canarias, Ed.). Islas Canarías.
dc.relationTorres P., C. A., Restrepo P., C., & Alzate G., A. (2009). Considerations of static and dynamic design for converters DC-DC, (42), 57–62.
dc.relationWebSolar. (2015). Controladores MPPT.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleDiseño de un controlador para el seguimiento del punto de máxima potencia (MPPT) en paneles solares


Este ítem pertenece a la siguiente institución