dc.contributorVargas Méndez, Leonor Yamile
dc.creatorSuárez Alvarado, María Angélica
dc.date.accessioned2019-09-16T20:13:45Z
dc.date.available2019-09-16T20:13:45Z
dc.date.created2019-09-16T20:13:45Z
dc.date.issued2019-09-09
dc.identifierSuárez Alvarado, M. A. (2019). Degradación de carbofurano, paraquat y clorpirifos por procesos de oxidación avanzada [Tesis de Maestría]. Universidad Santo Tomás, Bucaramanga, Colombia.
dc.identifierhttp://hdl.handle.net/11634/18698
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractWater is an essential resource to conserve the life of all beings that inhabit the planet and has been affected by the indiscriminate use of toxic pesticides. According to the commercialization statistics of chemical pesticides for agricultural use reported by the Colombian Agricultural Institute (ICA), in 2016 in our country a total of 57’284.087 liters of pesticides were sold, among which stand out the paraquat with 4'471.787 , mancozeb with 2’764.047, chlorpyrifos with 2’197.095 and carbofuran with 126.21 L (Table 1); These pesticides have high toxicity to mammals and all non-target animals present in ecosystems. The excessive and indiscriminate use of low biodegradable pesticides used in the control of pests in the country, has increased the production of leachates; Because a large part of them do not remain in the crop, they seep through the soil and contaminate the aquifers. That is why in the present investigation heterogeneous photocatalysis was used as an advanced oxidation method to degrade carbofuran, paraquat and chlorpyrifos, which are pesticides widely used in various crops implemented in Colombia, such as potatoes, sugar cane , coffee, onion, corn, among others. During this process, tetraphenylporphyrin chlorine (TClPP) and tetraphenylporphyrin methoxy (TMeOPP) were synthesized and metallized with iron (III) through condensation and coordination reactions reported in the literature (Adler et al., 1967; Falvo et al 1999). Porphyrins were then supported on titanium dioxide (TNT) nanotubes, which were prepared by hydrothermal reaction, which is based on an alkaline treatment of a titanium oxide precursor (Wu, et al., 2015). As a result, the modifications made to commercial titanium dioxide generated an increase in the production of oxidizing species when subjected to UV-Vis radiation, as well as the extension of semiconductor activation to the visible range. Catalysts sensitized with free porphyrins TClPP/TNT and TMeOPP/TNT degraded carbofuran in 83% and 85%; paraquat in 67% and 76%; and chlorpyrifos in 73% and 78%, respectively. The inclusion of iron as the metal center of the catalysts increased the average degradation percentage as follows: with the use of TClPPFe/TNT, it was possible to degrade carbofuran, paraquat and chlorpyrifos in 95%, 85% and 84% respectively, and through using the TMeOPPFe/TNT a percentage of carbofuran degradation of 89%, paraquat 82% was obtained; and chlorpyrifos 84%.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherMaestría Ciencias y Tecnologías Ambientales
dc.publisherFacultad de Química Ambiental
dc.relationAcevedo, M. P., & Suárez, M. A. (2013). Fotoactividad de nanomateriales de TiO2 modificado con porfirinas de Cu (II) y sin metal: formación de •OH y su aplicación en la degradación del carbofuran (Trabajo de grado en pregrado en Química Ambiental). Universidad Santo Tomás, Bucaramanga, Colombia p.82-93.
dc.relationAdler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J., & Korsakoff, L. (1967). A simplified synthesis for meso-tetraphenylporphine. Journal of Organic Chemistry, 32(2), 476-477. DOI: 10.1021/jo01288a053
dc.relationAdler, A. D., Longo, F. R., Kampas, F., & Kim, J. (1970). On the preparation of metalloporphrins. Journal of inorganic and nuclear chemistry, 32(7), 2443-2445. DOI: 10.1016/0022-1902(70)80535-8.
dc.relationAdler, A. D., Longo, F. R., & Shergalis, W. (1964). Mechanistic investigations of porphyrin syntheses. I. preliminary studies on ms-tetraphenylporphin. Journal of american chemical society, 86(15), 3145-3149. DOI: doi.org/10.1021/ja01069a035.
dc.relationAffam, A. C., & Chaudhuri, M. (2013). Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis. Journal of Environmental Management, 130(1), 160-165. DOI: 10.1016/j.jenvman.2013.08.058
dc.relationAlza, W. R., García, J. M., & Chaparro, S. P. (2016). Determinación voltamétrica de paraquat y glifosato en aguas superficiales. Corpoica Ciencia y Tecnología Agropecuaria, 17(3), 331-332. DOI: 10.21930/rcta.vol17_num3_art:510
dc.relationAllinger, N. L. (1984). Heterociclos aromáticos y productos naturales que lo contienen. In Reverté (Ed.), Química Orgánica, Madrid, España, p.1077.
dc.relationAmiri, H., Nabizadeh, R., Silva, S., Jamaleddin, S., Yaghmaeian, K., Badiei, A., & Naddafi, K. (2018). Response surface methodology modeling to improve degradation of chlorpyrifos in agriculture runoff using TiO2 solar photocatalytic in a raceway pond reactor. Ecotoxicology and Environmental Safety, 147(1), 919-925. DOI: 10.1016 / j.ecoenv.2017.09.062
dc.relationBauer, C., Jacques, P., Kalt, A. (1999). Investigation of the interaction between a sulfonated azo dye (AO7) and a TiO2 surface. Journal of chemical physics letters, 307(5) 397-406. DOI: 10.1016 / S0009-2614 (99) 00518-7.
dc.relationBeckie, H.J. (2011). Herbicide-resistant weed management: Focus on glyphosate. Pest Management Science, 67(9), 1037-1048. DOI: 10.1002 / ps.2195
dc.relationBenjwal, P., & Kar, K.K. (2015). One-step synthesis of Zn doped titania nanotubes and investigation of their visible photocatalytic activity. Materials Chemistry and Physics, 160(1), 279-288. DOI: 10.1016/j.matchemphys.2015.04.038
dc.relationBerberidou, C., Kitsiou, V., Lambropoulou, D.A., Antoniadis, Α., Ntonou, E., Zalidis, G.C., & Poulios, I. (2017). Evaluation of an alternative method for wastewater treatment containing pesticides using solar photocatalytic oxidation and constructed wetlands. Journal of Environmental Management, 195(2), 133-139. DOI: 10.1016/j.jenvman.2016.06.010
dc.relationBouras, P., Stathatos, E., & Lianos, P. (2007). Preversos metal-ion-doped nanocrystalline titania for photocatalysis. Applied Catalysis B: Environmental, 73(1-2), 51-59 DOI: 10.1016/j.apcatb.2006.06.007
dc.relationBraslavskym, S.E., (2007). Glossary of terms used in potochemistry 3rd edition. Pure and applied chemistry IUPAC, 79(3), 293-465.
dc.relationBurnham, B., & Zuckerman, J. (1970). Complex formation between porphyrins and metal ion. Journal of american chemical society, 95(6), 1547-1550. DOI: 10.1021/ja00709a019
dc.relationByrne, J.A., Fernandez, P.A., Dunlop, P.S.M., Alrousan, D.M.A., & Hamilton, J.W.J. (2011). Photocatalytic enhancement for solar desinfection of water: A Review. International Journal of Photoenergy, 2011(1), 1-12. DOI: 10.1155/2011/798051
dc.relationCalderbank, A., Charlton, D. Farrington, A. & James, R. (1972). Bipyridylium quaternary salts and related compounds. Part IV. Pyridones derived from paraquat and diquat. Journal of the chemical society, perkin transactions 1, 1972(1), 138-142. DOI: 10.1039 / P19720000138
dc.relationCamacho, W.R., Colmenares, J., García, M., & Acuña, S.P. (2016). Estimación del riesgo de contaminación de fuentes hídricas de pesticidas (Mancozeb y Carbofuran) en Ventaquemada, Boyacá - Colombia. Acta Agronomica, 65(4), 368-374. DOI: 10.15446/acag.v65n4.50325.
dc.relationCárdenas, O., Silva, E., Morales, L., & Ortiz, J. (2005). Estudio epidemiológico de exposición a plaguicidas organofosforados y carbamatos en siete departamentos colombianos. Biomédica, 25(2), 170-80. DOI: 10.7705/biomedica.v25i2.1339
dc.relationCarlson, J., Wisoczanski, A., Voightman. (2014). Limits of quantitation- yet another suggestion. Spectrochimica Acta part B: Atomic spectroscopy, 96(6), 69-73. DOI: 10.1016/j.sab.2014.03.012.
dc.relationCastells, X.E. (2012). Diccionario de Términos ambientales: Reciclaje de residuos industriales. (Ediciones Dias de Santos, Ed.). Madrid, España, p 567-569
dc.relationCastro, K., Figueira, F., Mendes, R., Cavaleiro, J., Neves, M., Simles, M., Almeida, F., Tomé, J., & Nakagaki, S. (2017) Copper–Porphyrin–Metal–Organic frameworks as oxidative heterogeneous catalysts. ChemCatChem Communications, 9(5), 2939-2945. DOI: 10.1002/cctc.201700484
dc.relationComninellis, C., Kapalka, A., Malato, S., Parsons, S., Poulios, I., & Mantzavinos, D. (2008). Advanced oxidation processes for water treatment: advances and trends for R&D. Journal of Chemical Technology & Biotechnology, 83(6), 769-776. DOI: 10.1002/jctb.1873
dc.relationCosta, J.M. (2005). Diccionario de Química Física. (Díaz de Santos S.A, Ed.) (1st ed.). Barcelona, España, p.420
dc.relationCoy, G., Bojaca, R., & Duque, M. (2006). Estandarización de métodos analíticos. En: Procedimientos para la estandarización de métodos analiticos. Instituto de hidrología meteorología y estudios ambientales-IDEAM. p. 3.
dc.relationCruz, M., Gomez, C., Duran-Valle, C.J., Pastrana-Martínez, L.M., Faria, J.L., Silva, A.M.T., & Bahamonde, A. (2017). Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix. Applied Surface Science, 416(1), 1013-1021. DOI: 10.1016/j.apsusc.2015.09.268
dc.relationChen, J., & Browne, W. (2018). Photochemistry of iron complexes. Coordination Chemistry Reviews, 374(21), 15-35. DOI: 10.1016/j.ccr.2018.06.008
dc.relationCheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., & Liu, Y. (2016). Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chemical engineering journal, 284(1), 582-598. DOI: 10.1016/j.cej.2015.09.001
dc.relationCho, Y., Choi, W., Lee, C., Hyeon, T., & Lee, H. (2001). Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environmental Science & Technology, 35(5), 966-970. DOI: 10.1021/es001245e
dc.relationDelsouz, M. R., Shafeeyan, M. S., Abdul, A. A., & Wan, W. M. A. (2017). Application of doped photocatalysts for organic pollutant degradation - A review. Journal of Environmental Management, 198(2), 78-94. DOI: 10.1016/j.jenvman.2017.04.099
dc.relationDemeestere, K., Dewulf, J., & Van, H. (2007). Heterogeneous photocatalysis as an advanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: state of art. Critical reviews in environmetal science and technology, (37)6, 489-538. DOI: 10.1080/10643380600966467
dc.relationDepartamento Administrativo Nacional de Estadística. (2016). Tercer censo nacional agropecuario: Hay campo para todos - Tomo 2. Departamento Administrativo Nacional de Estadística (DANE). Bogotá, Colombia, p.47-286.
dc.relationDewil, R., Mantzavinos, D., Poulios, I., & Rodrigo, M.A. (2017). New perspectives for Advanced Oxidation Processes. Journal of Environmental Management, 195(2), 93–99. DOI: 10.1016/j.jenvman.2017.04.010
dc.relationDomènech, X., Jardim, W., & Litter, M. (2001). Procesos avanzados de oxidación para la eliminación de contaminantes. In M. A. Blesa (Ed.), Eliminación de Contaminantes por Fotocatálisis Heterogénea (1st ed). La Plata, Argentina, p.3-26.
dc.relationDorough, G D., Miller, J R., & Huennekens, Frank. (1951). Spectra of the metallo-derivatives of α,β,y,δ- tetraphenylporphine. Journal of american chemical society, 73(9), 4315-4320. DOI: doi.org/10.1021/ja01153a085.
dc.relationDyke, B.R., Sanderson, D., & Noakes, D. (1970). Acute toxicity data for pesticides. World Review of Pest Control, 9(3), 119-127.
dc.relationEgerton, R. (2016). The scanning electron microscope. En: Physical principles of electron microscopy. Springer, Cham. p. 121-147
dc.relationEsplugas, S., Giménez, J., Contreras, S., Pascual, E., & Rodriguez, M. (2002). Comparison of different advanced oxidation processes for phenol degradation. Water research, 36(6), 1034,1042. Doi: 10.1016/S0043-1354(01)00301-3
dc.relationFagadar, E., Vlascici, D., Tudose, R., & Costisor, O. (2007). UV-VIS and fluorescence spectra of meso-tetraphenylporphyrin and mesotetrakis-(4-methoxyphenyl) porphyrin in THF and THF-water systems. The influence of pH. En Revista de Chimie -Bucharest- Original Edition, 58(5), 451-455.
dc.relationFalvo, R., Mink, L., & Marsh, D. (1999). Microscale synthesis and 1H NMR analysis of tetraphenylporphyrins. Journal of chemical education, 76(2), 237-239. DOI: 10.1021/ed076p237.
dc.relationFeng, Y., Chen, S., Guo, W., Zhang, Y., & Liu, G. (2007). Inhibition of iron corrosion by 5,10,15,20-tetraphenylporphyrin and 5,10,15,20-tetra-(4-chlorophenyl)porphyrin adlayers in 0.5 M H2SO4 solutions. En: Journal of Electroanalytical Chemistry, 602(1),115-122. DOI: 10.1016/j.jelechem.2006.12.016
dc.relationFernandes, A., Morao, A., Magrinho, M., Lopes, A., & Gonçalves, I. (2004). Electrochemical degradation of C.I. Acid Orange 7. Dyes and Pigments, 61(3), 287-296. DOI: 10.1016/j.dyepig.2003.11.008
dc.relationFinlayson, B. J., Harrington, J. M., Fujimura, R., & G. Isaac. (1991). Toxicity of Colusa Basin Drain water to young mysids and striped bass. En: California Department of Fish and Game Environmental Services Division Administrative Report, Sacramento, California. p. 91-92.
dc.relationFlorêncio, H., Pires, E., Castro, A., Nunes, M., Borges, C., & Costa, F. (2004). Photodegradation of diquat and paraquat in aqueous solutions by titanium dioxide: evolution of degradation reactions and characterisation of intermediates. Chemosphere, 55(2004), 345-355. DOI: 10.1016/j.chemosphere.2003.11.013
dc.relationFraume, N.J., Palomino, A.T., & Ramirez, M.A. (2006). Manual abecedario ecológico: la más completa guia de términos ambientales. (Editorial San Pablo, Ed.) (6th ed.). Bogotá, Colombia, p.95.
dc.relationGarcés, L.F., Mejía, E.A., & Santamaría, J.J. (2004). La fotocatálisis como alternativa para el tratamiento de aguas residuales. Revista Lasallista de Investigación, 1(1), 83-92.
dc.relationGaya, U., & Abdullah, A. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals progress and problems. Journal of photochemistry reviews, 9(1), 1-12. DOI: 10.1016/j.jphotochemrev.2007.12.003
dc.relationGil, E., Cabrera, M., & Jaramillo, S. A. (2003). Foto-oxidación del sistema cromo hexavalente-4-clorofenol. Universidad Eafit 39(0120–341X), 60-75.
dc.relationGil, E., Quintero, L., Rincon, M., & Rivera, D. (2006). Degradación de colorantes de aguas residuales empleando UV/TiO2/H2O2/Fe2+. Revista universidad Eafit, 42(146), 80-101.
dc.relationGiovannetti, R. (2012). The use of spectrophotometry UV-Vis for the study of porphyrins. En J. Uddin (Ed), Macro to nano spectroscopy. Rijeka, Croacia, p. 87-108.
dc.relationGmurek, M., Olak, M., & Ledakowicz, S. (2017). Photochemical deomposition of endocrine disrupting compounds – A review. Chemical Engineering Journal, 310(2), 437-456. DOI: 10.1016/j.cej.2016.05.014
dc.relationGobernación de Boyacá. (2016). Plan de Desarrollo Departamental de Boyacá 2016 - 2019. p.600-601.
dc.relationGoldstein, S., & Czapsky, G. (1984). Mannitol as an OH• scavenger in aqueous solutions and in biological systems. International journal of radiation biology and related studies in physics, chemistry and medicine, 46(6), 725-729. DOI: 10.1080/09553008414551961.
dc.relationGong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., & Dickey, E.C. (2001). Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of material research, 16(12) 3331-3334. DOI: 10.1557/JMR.2001.0457.
dc.relationGranados, G., Páez, E.A., Ortega, F.M., Ferronato, C., & Chovelon, J.M. (2009). Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation. Applied Catalysis B: Environmental, 89(3–4), 448–454. DOI: 10.1016/j.apcatb.2009.01.001
dc.relationGranados, G., Torres, E., Zambrano, M., Nieto, A., & Gómez, V. (2018). Formation of hydroxyl radicals by a Fe2O3 microcrystals and its role in photodegradation of 2,4- dinitrophenol and lipid peroxidation. Research on Chemical Intermediates, 44(5), 3407-3424. DOI: 10.1007/s11164-018-3315-2.
dc.relationGrant, F. (1959). Properties of rutile (titanium dioxide). Reviews of modern physics, 31(3), 646-674. DOI: 10.1103/RevModPhys.31.646.
dc.relationGupta, N., & Bardos, T. (1968). Synthetic porphyrins II: Preparation and spectra of some metal chelates of para-substituted-meso-Tetraphenylporphines. Journal of pharmaceutical sciences, 57(2), 300-304. DOI: 10.1002/jps.2600570211.
dc.relationGupta, V., & Ali, I. (2008). Removal of endosulfan and methoxychlor from water on carbon slurry. Environmental Science and Technology, 42(3), 766-770. DOI: 10.1021/es7025032
dc.relationHan, C., Shao, Q., Liu, M., Ge, S., Liu, Q., & Lei, J. (2016). 5,10,15,20-tetrakis(4-chlorophenyl)porphyrin decorated TiO2 nanotube arrays: Composite photoelectrodes for visible photocurrent generation and simultaneous degradation of organic pollutant. Materials science in semiconductro processing, 56(1), 166-173. DOI: 10.1016/j.mssp.2016.08.015.
dc.relationHerrmann, J.M. (2005) Destrucción de contaminantes orgánicos por fotocatálisis Heterogénea. En Tecnologías solares para la desinfección y descontaminación del agua. Solar Safe Water, 147-164.
dc.relationHien, T.D., Scharmüller, A., Kattwinkel, M., Kühne, R., Schüürmann, G., & Schäfer, R.B. (2017). Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments. Ecotoxicology and Environmental Safety, 145(1), 135-141. DOI: 10.1016/j.ecoenv.2017.07.027.
dc.relationHoyer, P. (1996). Formation of a titianium dioxide nanotube array. Langmuir, 12(6), 1411-1413. DOI: 10.1021/la9507803.
dc.relationHuang, C., Lv, Y., Zhou, Q., Kang, S., Li, X., & Mu, J. (2014). Visible photocatalytic activity and photoelectrochemical behavior of TiO2 nanoparticles modified with metal porphyrins containing hydroxyl group. Ceramics International, 40(5), 7093-7098. DOI: 10.1016/j.ceramint.2013.12.042
dc.relationHuang, X., Nahanishi, K., & Berova, N. (2000). Porphyrins and Metalloporphyrins: Versatile Circular Dichroic Reporter Groups for Structural Studies. Chirality, 12(4), 237-255. DOI: 10.1002/(SICI)1520-636X(2000)12:4<237::AID-CHIR10>3.0.CO;2-6
dc.relationHung, H., & Lien, S. (2007). Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Separation and purification technology, 58(1), 179-191. DOI: 10.1016/j.seppur.2007.07.017.
dc.relationInstituto Colombiano Agropecuario (2017). Estadísticas de comercialización de plaguicidas químicos de uso agrícola 2016. Bogotá, Colombia p.7-35.
dc.relationInstituto Colombiano Agropecuario (2018). Registros Nacionales PQUA. Bogotá, Colombia, p.1-118
dc.relationInternational Centre for Diffraction Data (2014). PDF-2 [base de datos]. Recuperado de http://www.icdd.com/index.php/pdf-2/
dc.relationKasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1998). Formation of titanium oxide nanotube. Langmuir, 14(12), 3160-3163. DOI: 10.1021/la9713816
dc.relationKasuga, T., Hiramatsu, M., Hoso, A., Sekino, T., & Nihara, K. (1999). Titania Nanotubes Prepared by Chemical Processing. Advanced Materials, 11(15), 1307-1311. DOI: 10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H
dc.relationKathiravan, A., & Renganathan, R. (2009). Effect of anchoring group on the photosensitization of colloidal TiO2 nanoparticles with porphyrins. Journal of colloid and interface science, 331(2), 401-407. DOI: 10.1016/j.jcis.2008.12.001.
dc.relationKatsumata, H., Matsuba, K., Kaneco, S., & Suzuki, T. (2005). Degradation of carbofuran in aqueous solution by Fe (III) aquacomplexes as effective photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 170(3), 239-245. DOI: 10.1016/j.jphotochem.2004.09.002
dc.relationKaur, T., Sraw, A., Pal, A., & Wanchoo, R. (2016). Utilization of solar energy for the degradation of carbendazim and propiconazole by Fe doped TiO2. Solar Energy, 125(3), 65-76. DOI: 10.1016/j.solener.2015.12.001
dc.relationKenkel, J. (2002). Introduction to spectrochemical methods. En: Analytical chemistry for technicians (Third edition), New York, p. 194-195.
dc.relationKim, H., & Lee, K. (2013). Photocatalytic activity of TiO2 nanotubes doped with Ag nanoparticles. Journal of nanoscience and nanotechnology, 13(8), 5597-5600. DOI: 10.1166/jnn.2013.7035
dc.relationKlavarioti, M., Mantzavinos, D., & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous sustems by advanced oxidation processes. Environment international, 35(2), 402-417. DOI: 10.1016/j.envint.2008.07.009
dc.relationKöck, M., Villagrasa, M., López de Alda, M., Céspedes-Sánchez, R., Ventura, F., & Barceló, D. (2013). Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Science of the Total Environment, 458-460(1), 466-476. DOI: 10.1016/j.scitotenv.2013.04.010
dc.relationKoppenol, W., & Butler, J. (1984). The radiation chemistry of Cytochrome c. Israel journal of chemistry, 24(1), 11-16. DOI: 10.1002/ijch.198400002.
dc.relationKumar G, R., & Chandra Ch, M. (2016). Advanced oxidation process–based nanomaterials for the remediation of recalcitrant pollutants. En Nanomaterials for Wastewater Remediation. Uttar Pradesh, India, p. 33-48, DOI: 10.1016/B978-0-12-804609-8.00003-0
dc.relationKumar, S., Kaushik, G., Dar, M. A., Nimesh, S., López, U.J., & Villareal, J.F. (2018). Microbial Degradation of Organophosphate Pesticides: A Review. Pedosphere, 28(2), 190-208. DOI: 10.1016/S1002-0160(18)60017-7
dc.relationKuo, W.S., Chiang, Y.H., & Lai, L.S. (2006). Degradation of carbofuran in water by solar photocatalysis in presence of photosensitizers. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 41(6), 937-948. DOI: 10.1080/03601230600806137
dc.relationLa Penna, M., Alvarez, M.G., Yslas, E.I., Rivarola, V., & Durantiti, E. (2001). Characterization of photodynamic effects of meso-tetrakis-(4-methoxyphenyl) porphyrin: biological consequences in a human carcinoma cell line. Dyes and Pigments, 49(2), 75-82. DOI: 10.1016/S0143-7208(01)00010-9
dc.relationLee, K., Mazare, A., & Schmuki, P. (2014). One-dimensional titanium dioxide nanomaterials: Nanotubes. Chemical Reviews, 114(19), 9385-9454. DOI: 10.1021/cr500061m
dc.relationLevine, A.D., & Asano, T. (2004). Peer reviewed: Recovering sustainable water from wastewater. Environmental Science & Technology, 38(1), 201A-208A. DOI: doi.org/10.1021/es040504n
dc.relationLevine, I. N. (2004). Cinética de reacción. In Fisicoquímica (quinta ed.). Madrid, España, p.719
dc.relationLi, J., Xu, J., Dai, W., Li, H., & Fan, K. (2009). Direct hydro-alcohol thermal sythesis of special core-shell structured Fe-doped titania microspheres with extended visible light response and enhanced photoactivity. Applied Catalysis B: Environmental, 85(3-4), 162-170. DOI: 10.1016/j.apcatb.2008.07.008
dc.relationLin, L., Hou, C., Zhang, X., Wang, Y., Chen, Y., & He, T. (2018). Highly efficient visible-light driven photocatalytic reduction of CO2 over g-C3N4 nanosheets/tetra(4-carboxyphenyl)porphyrin iron (III) Chloride heterogeneous catalysts. Applied Catalysis B: Environmental, 221(2), 312-319. DOI: 10.1016/j.apcatb.2017.09.033
dc.relationLindsey, J., Schereiman, I., Hsu, H., Keaney, P., & Marguerettas, A. (1987). Journal of organic chemistry, 57(5), 827-836. DOI: 10.1021/jo00381a022
dc.relationLitter, M. (1999). Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental, 23(2-3), 89-114. DOI: 10.1016/S0926-3373(99)00069-7.
dc.relationLittle, T. (2015). Method validation essentials, limit of blank, limit of detection, and limit of quantitation. BioPharm International, 28(4), 48-51.
dc.relationLiu, N., Chen, X., Zhang, J., & Schwank, J. (2014). A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catalysis today, 225(4), 34-51. DOI: 10.1016/j.cattod.2013.10.090.
dc.relationLock, E., & Wilks, M. (2010). Paraquat. En Hayes’ Handbook of pesticide toxicology (third ed.). London, UK, 1771-1827. DOI: 10.1016/C2009-1-03818-0.
dc.relationLongo, F., Brown, E., & Quimby, D. (1973). Kinetic studies on metal chelation by porphyrins. Annals of the New york academy of sciences, 206(1), 420-442. DOI: 10.1111/j.1749-6632.1973.tb43227.x
dc.relationLongo, F., Brown, E., & Quimby, D. (1973). Kinetic studies on metal chelation by porphyrins. Annals of the New york academy of sciences, 206(1), 420-442. DOI: 10.1111/j.1749-6632.1973.tb43227.x
dc.relationLü, X., Qian, H., Mele, G., De Riccardis, A., Zhao, R., Chen, J., & Hu, N. (2017). Impact of different TiO2 samples and porphyrin substituents on the photocatalytic performance of TiO2 copper porphyrin composites. Catalysis Today, 281(1), 45-52. DOI: 10.1016/j.cattod.2016.04.027
dc.relationMa, T., Inoue, K., Noma, H., Yao, K., & Abe, E. (2002). Effect of functional group on photochemical properties and photosensitization of TiO2 electrode sensitized by porphyrin derivates. Journal of photochemistry and photobiology A: Chemistry, 152(1), 207-212. DOI: 10.1016/S1010-6030(02)00025-4
dc.relationMaddila, S., Lavanya, P., & Jonnalagadda, S. B. (2015). Degradation, mineralization of bromoxynil pesticide by heterogeneous photocatalytic ozonation. Journal of Industrial and Engineering Chemistry, 24(1), 333-341. DOI: 10.1016/j.jiec.2014.10.005
dc.relationMahalakshmi, M., Arabindoo, B., Palanichamy, M., & Murugesan, V. (2007). Photocatalytic degradation of carbofuran using semiconductor oxides. Journal of Hazardous Materials, 143(1-2), 240-245. DOI: 10.1016/j.jhazmat.2006.09.008
dc.relationMalato, S., & Blanco, J. (1997). Procesos fotocatalíticos para la destrucción de contaminantes orgánicos en el agua. In Instituto de Estudios Almerienses (Ed.), Recursos naturales y medio ambiente en el sureste peninsular. Almería, España, p.49-62.
dc.relationMalato, S., Blanco, J., Estrada, C. A., Bandala, E. R., & Peñuela, G. (2001). Degradación de plaguicidas. En Eliminación de contaminantes por fotocatálisis heterogénea (1st ed). Madrid, España, p.269-284.
dc.relationMalato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1-59. DOI: 10.1016/j.cattod.2009.06.018
dc.relationMalato, S., Maldonado, M.I., Fernández, P., Oller, I., Polo, I., & Sánchez, R. (2016). Decontamination and disinfection of water by solar photocatalysis: The pilot plants of the Plataforma Solar de Almeria. Materials Science in Semiconductor Processing, 42(1), 15-23. DOI: 10.1016/j.mssp.2015.07.017
dc.relationManfroi, D.C., Cavalheiro, A.A., Perazolli, L.A., Varela, J.A., & Zaghete, M.A. (2014). Titanate nanotubes produced from microwave-assisted hydrothermal synthesis : Photocatalytic and structural properties. Ceramics International, 40(9), 14483-14491. DOI: 10.1016/j.ceramint.2014.07.007
dc.relationMargat, J., & Vallée, D. (2000). Mediterranean vision on water, population and the environment for the 21 st Century, En Drainage canals and rice fields. Egypt, p.1-66.
dc.relationMarinas A.A. (2007). Catálisis heterogénea y Química Verde. Anales de La Real Sociedad Española de Química, 103(1), 30-37.
dc.relationMatamoros, V., & Salvadó, V. (2013). Evaluation of a coagulation/flocculation-lamellar clarifier and filtration-UV-chlorination reactor for removing emerging contaminants at full-scale wastewater treatment plants in Spain. Journal of Environmental Management, 117(1), 96-102. DOI: 10.1016/j.jenvman.2012.12.021
dc.relationMele, G., Del Sole, R., Vasapollo, G., García, E., Palmisiano, L., & Schiavello, M. (2003). Photocatalytic degradation of 4-nitrophenol in aqueous suspensión by using polycrystalline TiO2 impregnated with functionalized Cu(II)–porphyrin or Cu(II)–phthalocyanine. Journal of Catalysis, 217(2), 334-342. DOI: 10.1016/S0021-9517(03)00040-X
dc.relationMenck, R., & Yonamine, M. (2007). Gas chromatographic-mass spectrometric method for the determination of the herbicides paraquat and diquat in plasma and urine samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 853(1-2), 260-264. DOI: 10.1016/j.jchromb.2007.03.026
dc.relationMiarAlipour, S., Friedmann, D., Scott, J., & Amal, R. (2018). TiO2/porous adsorbents: Recent advances and novel applications. Journal of Hazardous Materials, 341(1), 404-423. DOI: 10.1016/j.jhazmat.2017.07.070
dc.relationMilgrom, L R. (1997). Where porphyrins come from. En: Oxford university press. The color of life: an introduction to the chemistry of porphyrins and related, New York, p. 6-10 ; 48-62.
dc.relationMinisterio de agricultura. (2016). Evaluaciones Agropecuarias Municipales. Boyacá, Colombia, p. 1-5.
dc.relationMinisterio de la Protección Social, & Ministerio de Ambiente Vivienda y Desarrollo Territorial. (2017). Resolución Numero 2115, Minambiente. Bogotá, Colombia, p. 1-85.
dc.relationMoctezuma, E., Leyva, E., Monreal, E., Villegas, N., & Infante, D. (1999). Photocatalytic degradation of the herbicide “paraquat”. Chemosphere, 39(3)551-517. DOI: 10.1016/S0045-6535(98)00599-2
dc.relationMonroy C.O.M. (2009). Caracterización de las prácticas agrícolas asociadas con el uso y manejo de plaguicidas en cultivos de papa. caso vereda mata de mora, en el Páramo de Merchán, Saboya, Boyacá (Tesis de Maestría en Gestión Ambiental). Universidad Pontificia Javeriana. p.45-59
dc.relationMorales, C.A., & Rodríguez, N. (2004). El Clorpirifos: posible disruptor endocrino en bovinos de leche. Revista Colombiana de Ciencias Pecuarias, 17(3), 255-266.
dc.relationMoreira, F., Boaventura, R., Brillas, E., & Vilar, V. (2017). Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewater. Applied Catalysis B: Environmental 202(1), 217-261. DOI: 10.1016/j.apcatb.2016.08.037
dc.relationMothilal, K.K., Johnson, J., Gandhidasan, R., & Murugesa, R., (2004). Photosensitization with anthraquinone derivates: optical and EPR spin trapping studies of photogeneration of reactive oxygen species. Journal of Photochemistry and Photobiology A: Chemistry, 162(1), 9-16. DOI: 10.1016/S1010-6030(03)00290-9
dc.relationNatividad, M., Ormad, M., Mosteo, R., & Ovelleiro, J. (2012). Photocatalytic degradation of pesticides in natural water: effect of hydrogen peroxide. International Journal of Photoenergy, 2012(1), 1-12. DOI: 10.1155/2012/371714
dc.relationNATO Science for Peace and Security Series C: Environmental Security. (2011). Environmental Security in South-Eastern Europe: International Agreements and their Implementation. En Springer Science & Business Media. Vama, Bulgaria, 5, p.69-84.
dc.relationNiu, J., Yao, B., Chen, Y., Peng, C., Yu, X., Zhang, J., & Bai, G. (2013). Enhanced photocatalytic activity of nitrogen doped TiO2 photocatalysts sensitized by metallo Co, Ni-porphyrins. Applied Surface Science, 271(1), 39-44. DOI: 10.1016/j.apsusc.2012.12.175
dc.relationOki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313(5790), 1068-1072. DOI: 10.1126/science.1128845
dc.relationOrellana, G., Villén, L., & Jimenez, E. (2005). Desinfección mediante fotosensibilizadores: principios básicos. En: Solar Safe Water. Buenos Aires, Argentina, p. 243-247.
dc.relationPark, J.Y., Choi, K., Lee, J.H., Hwang, C.H., Choi, D.Y., & Lee, J.W. (2013). Fabrication and characterization of metal-doped TiO2 nanofibers for photocatalytic reactions. Materials Letters, 97(1), 64-66. DOI: 10.1016/j.matlet.2013.01.047
dc.relationPatarroyo, L.C., Reyes, Y.C., Toloza, E.P., Becerra, M.L., & Medina, O.J. (2013). Determinación de plaguicidas clorpirifos en cultivos de fresa, mora y tomate de los municipios de Arcabuco y Sutamarchán por técnicas analíticas. En VIII Encuentro Facultad de Ciencias. Tunja, Colombia, p.128-130.
dc.relationPeláez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., & Dionysiou, D.D. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125(1), 331-349. DOI: 10.1016/j.apcatb.2012.05.036.
dc.relationPeñuela, G., & Barceló, D. (1997). Comparative degradation kinetics of chlorpyrifos in water by photocatalysis with FeCl3, TiO2 and photolysis using solid-phase disk extraction followed by gas chromatographic techniques. Toxicological & environmental chemistry, 62(1-4), 135-147. DOI: 10.1080/02772249709358503.
dc.relationPérez, C.C. (1996). Configuración del sensor. En Sensores Ópticos. Universidad de Valencia, Valencia, España, p.97-114.
dc.relationPérez, M.H., Peñuela, G., Maldonado, M.I., Malato, O., Fernández-Ibáñez, P., Oller, I., & Malato, S. (2006). Degradation of pesticides in water using solar advanced oxidation processes. Applied Catalysis B: Environmental, 64(3), 272–281. DOI: 10.1016/j.apcatb.2005.11.013.
dc.relationPey, J. (2008). Aplicación de procesos de oxidación avanzada (Fotocatálisis solar) para el tratamiento y reutilización de efluentes textiles (Tesis Doctoral). Universidad Politécnica De Valencia, Valencia, España, p.15-61.
dc.relationPineda, L.L. (2017). Diagnóstico de la Planta de Tratamiento de Agua Residual (PTAR) de Tunja – Boyacá (Tesis de pregrado). Universidad Católica de Colombia. Bogotá, Colombia, p.22-26.
dc.relationPino, N., & Peñuela, G. (2011). Simultaneous degradation of the pesticides methyl parathion and chlorpyrifos by an isolated bacterial consortium from a contaminated site. International Biodeterioration and Biodegradation, 65(6), 827-831. DOI: 10.1016/j.ibiod.2011.06.001.
dc.relationPortela, R.R. (2008). Eliminación fotocatalítica de H2S en aire mediante TiO2 soportado sobre sustratos transparentes en el UV-A (Tesis Doctoral). Universidad de Santiago de Compostela, Santiago de compostela, España, p.201.
dc.relationPortilla, Á., Pinilla, G.D., Caballero, A J., Gómez, E., Marín, L.R., Manrique, E.F., & Gamboa, N. (2014). Prevalencia de signos y síntomas asociados a la exposición directa a plaguicidas neurotóxicos en una población rural colombiana en 2013. Médicas UIS, 27(2), 41-49.
dc.relationQiang, Z., Liu, C., Dong, B., & Zhang, Y. (2010). Degradation mechanism of alachlor during direct ozonation and O3/H2O2 advanced oxidation process. Chemosphere, 78(5), 517-526. DOI: 10.1016/j.chemosphere.2009.11.037.
dc.relationRay, A., & Ghosh, M. (2005). Aquatic toxicity of carbamates and organophosphates. Toxicology of organophosphate & carbamate compound, 2006(1), 657-672. DOI: 10.1016/B978-012088523-7/50046-6.
dc.relationRazali, M., Noor, A.F., Mohamed, A & Sreekantan., S. (2012). Morphological and structural studies of titanate an titania nanostructured materials obtained after heat tratments of hydrotermally produced layered titanate. Journal of nanomaterial, 2012(1), 1-10. DOI: 10.1155/2012/962073
dc.relationRestrepo, I., Sanchez, L.D., Galvis, A., Rojas, J., & Sanabria, I.J. (2007). Tecnologías alternativas para la desinfección de aguas. En Avances en investigación y desarrollo en agua y saneamiento para el cumplimiento de las metas del milenio. Valle, Colombia, p.370-379.
dc.relationRichardson, S.D. (2008). Environmental Mass Spectrometry: Ermerging Contaminants and Current Issues. Analytical Chemistry, 80(12), 4373-4402. DOI: 10.1021/ac800660d.
dc.relationRodríguez, A., Letón, P., Rosal, R., Dorado, M., Villar, S., & Sanz, J.(2016). Técnologías emergentes. Tratamientos avanzados de aguas residuales industriales, Madrid, España, p. 46- 48.
dc.relationRodríguez, D.L. (2011). Evaluación de la presencia de residuos de plaguicidas en miel de abejas provenientes de los departamentos de Boyacá, Cundinamarca (Tesis Magister en ciencia químicas), Magdalena y Santander. Universidad Nacional de Colombia. Bogotá, Colombia, p.126-130.
dc.relationRothemund, P., & Menotti, A. (1941). Phorphyrin studies. IV. The synthesis of α,β,ϒ,δ-tetraphenylporphine. Journal of american chemical society, 63(1), 267-270. DOI: 10.1021/ja01846a065.
dc.relationSanches, S., Barreto, M., & Pereira, V. (2010). Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water research, 44(2010), 1809-1818. DOI: 10.1016/j.watres.2009.12.001.
dc.relationSangpour, P., Hashemi, F., & Moshfegh, A. Z. (2010). Photoenhanced degradation of methylene blue on cosputtered M:TiO2 (M = Au, Ag, Cu) nanocomposite systems: A comparative study. Journal of Physical Chemistry C, 114(33), 13955-13961. DOI: 10.1021/jp910454r
dc.relationSantos, M.S.F., Alves, A., & Madeira, L.M. (2011). Paraquat removal from water by oxidation with Fenton’s reagent. Chemical Engineering Journal, 175(1), 279-290. DOI: 10.1016/j.cej.2011.09.106.
dc.relationSantos., L. (2008). Compuestos orgánicos como fotocatalizadores solares para la eliminación de contaminantes en medios acuosos: aplicaciones y estudios fotofísicos (Tesis Doctoral). Universitat Politècnica de Valencia, Valencia, España, p.11-54.
dc.relationSattler, K.D. (2010). Handbook of Nanophysics: Nanomedicine and Nanorobotics CRC Press. London, New york, p. 10-1-10-4.
dc.relationSauer, T., Cesconeto, G., José, H., & Moreira R. (2002). Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. Journal of Photochemistry and Photobiology A: Chemistry, 149(1), 147-154. DOI: 10.1016/S1010-6030(02)00015-1
dc.relationSclafani, A., & Herrmann, J. (1996) Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions. Journal of physical chemistry, 100(32), 13655-13661. DOI: 10.1021/jp9533584.
dc.relationScheid, S. (2009). Síntese e caracterização da Meso-tetrakis(4-metóxifenil)porfirina e derivados. (Tesis maestría en química aplicada). Universidade Estadual de Ponta Grossa, Brasil. p. 41-56.
dc.relationShi, J., Chen, G., Zeng, G., Chen, A., He, K., Huang, Z., Hu, L., Zeng, J., Wu, J., & Liu, W. (2018). Hydrothermal synthesis of graphene wrapped Fe-doped TiO2 nanospheres with high photocatalysis performance. Ceramics International, 44(7), 7473-7480. DOI: 10.1016/j.ceramint.2018.01.124.
dc.relationShifu, C., & Gengyu, C. (2005). Photocatalytic degradation of organophosphorus pesticides using floating photocatalyst TiO2•SiO2/beads by sunlight. Solar Energy, 79(1), 1-9. DOI: 10.1016/j.solener.2004.10.006
dc.relationShriver, D., Atkins, P., & Langford, C. (2007). Estructura Molecular. In Química Inorgánica. Barcelona, España, p.91-92.
dc.relationShukla, O., & Kulshretha, A. (1998). Effect and Fate of Pesticides in Rats. En Pesticides, man and biosphere. p. 217–417.
dc.relationSilverstein, R., Morril, T., & Bassier, C. (1991). Ultraviolet Spectrometry. En Spectrometric identification of Orfanic Compounds (5th edition). New York. p. 240-274.
dc.relationSimonsen, M.E. (2014). Heterogeneous Photocatalysis. En Chemistry of Advanced Environmental Purification Processes of Water: Fundamentals and Applications (1st ed.). Amsterdam, p.135-170.
dc.relationSinclair, C.J., & Boxall, A.B.A. (2003). Assessing the ecotoxicity of pesticide transformation products. Environmental Science and Technology, 37(20), 4617-4625. DOI: 10.1021/es030038m
dc.relationSivagami, K., Vikraman, B., Krishna, R.R., & Swaminathan, T. (2016). Chlorpyrifos and Endosulfan degradation studies in an annular slurry photo reactor. Ecotoxicology and Environmental Safety, 134(2), 327-331. DOI: 10.1016/j.ecoenv.2015.08.015
dc.relationSoto, A.C.A., & López F.G.A. (2009). Degradación Fotocatalítica de la Fluoresceina (Trabajo de grado de pregrado). Universidad Tecnología de Pereira - Escuela de Tecnología Química, Pereira, Colombia, p.44 -45.
dc.relationSuárez, S., Carballa, M., Omil, F., & Lema, J.M. (2008). How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters. Reviews in Environmental Science and Biotechnology 7(2), 125-138. DOI: 10.1007/s11157-008-9130-2
dc.relationSun, B., Vorontsov, A., & Smirniotis, P. (2003). Role of platinum deposite on TiO2 in pheol photocatalytic oxidation. Langmuir, 19(8), 3151-3156. DOI: doi.org/10.1021/la0264670.
dc.relationSun, L., Li, J., Wangs, C., Li, S., Chen, H., & Lin, C. (2009). An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity. Solar Energy Materials and Solar Cells, 93(10), 1875-1880. DOI: 10.1016/j.solmat.2009.07.001
dc.relationSun, Y., Zhao, Q., Wang, G., & Yan, K. (2017). Influence of water content on the formation of TiO2 nanotubes and photoelectrochemical hydrogen generation. Journal of alloys and compounds, 711(1), 514-520. DOI: 10.1016/j.jallcom.2017.03.007
dc.relationSun, Z., She, Y., Zhou, Y., Song, X., & Li, K. (2011). Synthesis, characterization and spectral properties of substituted tetraphenylporphyrin iron chloride complexes. Molecules, 16(4)2960-2970. DOI: 0.3390/molecules16042960.
dc.relationTestai, E., Buratti, F., & Di Consiglio, E. (2010). Chlorpyrifos. En Hayes’ Handbook of pesticide toxicology (Third Edit). Italy, p. 1505-1526.
dc.relationThind, P.S., Kumari, D., & John, S. (2018). TiO2/H2O2 mediated UV photocatalysis of Chlorpyrifos: Optimization of process parameters using response surface methodology. Journal of Environmental Chemical Engineering, 6(3), 3602 – 3609. DOI: 10.1016/j.jece.2017.05.031.
dc.relationThomas, D., & Marell, A. (1959). Metal chelates of tetraphenylporphine and of some p-substituted derivates. Journal of american chemical society, 81(19) 5111-5119. DOI: 10.1021/ja01528a024.
dc.relationTobin, J.S. (1970). Carbofuran. A new carbamate insecticide. Journal of Occupational Medicine, 12(1), 16-19.
dc.relationUnited States Environmental Protection Agency (2006). Reregistration Eligibility Decision for Chlorpyrifos p.6-8, 43-45.
dc.relationUnited States Environmental Protection Agency. (1997). Reregistration Eligibility Decision (RED) Paraquat Dichloride. Washington D,C. p. 2-9, 71-77
dc.relationUnited States Environmental Protection Agency. (2007). Completion of the Tolerance Reassessment and Final Registration Eligibility Decisions for the N-methyl Carbamate Pesticides. p.3–5, 18-20.
dc.relationVallero, D. (2004). Glossary of environmental sciences and engineering terminology. En Environmental Contaminats: Assessment and Control (First Edition), Durham, USA, p. 695
dc.relationVela, N., Calín, M., Yáñez-Gascón, M. J., Garrido, I., Pérez-Lucas, G., Fenoll, J., & Navarro, S. (2018). Photocatalytic oxidation of six pesticides listed as endocrine disruptor chemicals from wastewater using two different TiO2 samples at pilot plant scale under sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 353(1), 271-278. DOI: 10.1016/j.jphotochem.2017.11.040
dc.relationWalter, M.G., Rudine, A.B., & Wamser, C.C. (2010). Porphyrins and phthalocyanines in solar photovoltaic cells. Journal of Porphyrins and Phthalocyanines, 14(9), 759-792. DOI: 10.1142/S1088424610002689
dc.relationWang, Q., Jin, R., Zhang, M., & Gao, S. (2017). Solvothermal preparation of Fe-doped TiO2 nanotube arrays for enhancement in visible light induced photoelectrochemical performance. Journal of Alloys and Compounds, 690(1), 139-144. DOI: 10.1016/j.jallcom.2016.07.281.
dc.relationWei, M., Wan, J., Hu, Z., Peng, Z., Wang, B., & Wang, H. (2017). Preparation, characterization and visible-light-driven photocatalytic activity of a novel Fe(III) porphyrin-sensitized TiO2 nanotube photocatalyst. Applied Surface Science, 391(B), 267-274. DOI: 10.1016/j.apsusc.2016.05.161.
dc.relationWei, M., Wan, J., Hu, Z., Wang, B., & Peng, Z. (2015). Synthesis, electron transfer and photocatalytic activity of TiO2 nanotubes sensitized by meso-tetra(4-carboxyphenyl)porphyrin under visible-light irradiation. RSC Advances 5(72), 58184-58190. DOI: 10.1039/C5RA11526D.
dc.relationWilliams, D., & Carter, C. (1996) The transmission electron microscope. En: Transmission electron microscopy. Springer, Boston p. 5-14.
dc.relationWintgens, T., Salehi, F., Hochstrat, R., & Melin, T. (2008). Emerging contaminants and treatment options in water recycling for indirect potable use. Water Science and Technology, 57(1), 99-107. DOI: 10.2166/wst.2008.799.
dc.relationWintrobe, M., & Geer, J. P. (2009). Molecular genetic aspects of nonhodkin. En Wintrobe’s Clinical Hematology (Twelfth ed), Filadelfia, Pensilvania, p.90-207.
dc.relationWorld Health Organization. (2009). The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification. Germany. p.1-81
dc.relationWu, L., Qiu, Y., Xi, M., Li, X., & Cen, C., (2015). Fabrication of TiO2 nanotubes-assembled hierarchical microspheres with enhanced photocatalytic degradation activity. New Journal of Chemestry, 39(6), 4766-4773. DOI: 10.1039/C5NJ00373C.
dc.relationYao, B., Peng, C., Zhang, W., Zhang Q., Niu, J., & Zhao, J. (2015). A novel Fe(III) porphyrin-conjugated TiO2 visible-light photocatalyst. Applied catalysis B: Environmental, 174-175(9), 77-84. DOI: 10.1016/j.apcatb.2015.02.030.
dc.relationYu, H., Wang, X., Sun, H., & Huo, M. (2010). Photocatalytic degradation of malathion in aqueous solution using an Au-Pd-TiO2 nanotube film. Journal of Hazardous Materials, 184(1-3), 753-758. DOI: 10.1016/j.jhazmat.2010.08.103.
dc.relationYuan, R., Zhou, B., Hua, D., & Shi, C. (2014). Effect of metal ion-doping on characteristics and photocatalytic activity of TiO2 nanotubes for removal of humic acid from water. Environmental Science & Engineering, 9(5), 850-860. DOI: 10.1007/s11783-014-0737-y.
dc.relationZahedi, F., Behpour, M., Ghoreishi, S. M., & Khalilian, H. (2015). Photocatalytic degradation of paraquat herbicide in the presence TiO2 nanostructure thin films under visible and sun light irradiation using continuous flow photoreactor. Solar Energy, 120(1), 287-295. DOI: 10.1016/j.solener.2015.07.010.
dc.relationZakavi, S., Hosini, S., & Mojarrad, A. (2017). New insights into the influence of weak and strong acids on the oxidative staability and photocatalytic activity of porphyrins. New Journal of Chemistry, 41(19), 11053-11059. DOI: 10.1039 / C7NJ02442H.
dc.relationZalat, O., Elsayed, M., Fayed, M., & Abd El Megid, M. (2014). Validation of UV spectrophotometric and HPLC methods for quantitave determination of chlorpyrifos. International Letters of Chemistry, Physics and Astronomy, 21(1), 58-63. DOI: 10.18052/www.scipress.com/ILCPA.21.58.
dc.relationZangeneh, H., Zinatizadeh, A.A.L., Habibi, M., Akia, M., & Hasnain Isa, M. (2015). Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. Journal of Industrial and Engineering Chemistry, 26(1), 1-36. DOI: 10.1016/j.jiec.2014.10.043.
dc.relationZhang, J., Zhou, P., Liu, J., & Yu, J. (2014). New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Journal of Physical Chemistry Chemical Physics, 16(38), 20382-20386. DOI: 10.1039/c4cp02201g
dc.relationZhang, Q., Gao, L., & Guo, J. (2000). Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Applied catalysis B: Environmental, 26(1), 207-215. DOI: 10.1016/S0926-3373(00)00122-3.
dc.relationZhang, Z., Wang, C.C., Zakaria, R., & Ying, J. (1998). Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts. Journal of physical chemistry, 102(52), 10871-10878. DOI: 10.1021/jp982948+.
dc.relationZhao, X., Liu, X., Yu, M., Wang, C., & Li, J. (2017). The highly efficient and stable Cu, Co, Zn-porphyrin–TiO2 photocatalysts with heterojunction by using fashioned one-step method. Dyes and Pigments, 136(1), 648-656. DOI: 10.1016/j.dyepig.2016.09.025.
dc.relationZheng, W., Shan, N., Yu, L., & Wang, X. (2008). UV visible, fluorescence and EPR properties of porphyrins and metalloporphyrins. Dyes and Pigments, 77(1), 153-157. DOI: 10.1016/j.dyepig.2007.04.007.
dc.relationZoltan, T., Rosales, M.C., & Yadarola, C. (2016). Reactive oxygen species quantification and their correlation with the photocatalytic activity of TiO2 (anatase and rutile) sensitized with asymmetric porphyrins. Journal of Environmental Chemical Engineering, 4(4), 3967-3980. DOI: 10.1016/j.jece.2016.09.008.
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleDegradación de carbofurano, paraquat y clorpirifos por procesos de oxidación avanzada


Este ítem pertenece a la siguiente institución